A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Overview

Awesome Bayesian Statistics

This is a repository that I created while learning Bayesian Statistics. It contains links to resources such as books, articles, magazines, research papers, and influential people in the domain of Bayesian Statistics. It will be helpful for beginners who want a one-stop access to all the resources at one place.

It is a collaborative work, so feel free to pull and add content to this. This way, we will be able to make it more community-driven.

Books

  1. Bayesian Statistics for Beginners: A Step-by-Step Approach, Therese M. Donovan (2019)
  2. Doing Bayesian Data Analysis: A Tutorial Introduction with R, John Kruschke (2010)
  3. Introduction to Bayesian Statistics, William M. Bolstad (2004)
  4. Bayesian Data Analysis, Donald Rubin (1995)
  5. Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks, Will Kurt (2019)
  6. A First Course in Bayesian Statistical Methods, Peter D Hoff (2009)
  7. Think Bayes: Bayesian Statistics in Python, Allen B. Downey (2012)
  8. A Student's Guide to Bayesian Statistics, Ben Lambert (2018)
  9. Bayesian Analysis with Python: Introduction to Statistical Modelling and Probabilistic Programming using PyMC3 and ArviZ, Osvaldo Martin (2016)
  10. Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference, Cameron Davidson-Pilon (2015)
  11. The Bayesian Way: Introduction Statistics for Economists and Engineers, Svein Olav Nyberg (2018)
  12. Bayesian Biostatistics, Emmanuel Lesaffre (2012)
  13. Bayes Theorem: A Visual Introduction for Beginners, Dan Morris (2017)
  14. Bayesian Econometrics, Gary Koop (2003)
  15. Regression Modelling with Spatial and Spatial-Temporal Data: A Bayesian Approach, Robert P. Haining (2019)
  16. Bayesian Reasoning and Machine Learning, David Barber (2012)

Courses

  1. Bayesian Statistics: From Concept to Data Analysis, University of California Santa Cruz
  2. Bayesian Methods for Machine Learning, HSE University
  3. Introduction to Bayesian Analysis Course with Python 2021, Udemy
  4. Bayesian Machine Learning in Python: A/B Testing, Udemy
  5. A Comprehensive Guide to Bayesian Statistics, Udemy
  6. Statistical Rethinking, Max Planck Institute for Evolutionary Anthropology, Leipzig
  7. Bayesian Statistics for the Social Science, Benjamin Goodrich, Columbia University New York
  8. Bayesian Data Analysis in Python, Datacamp

Curriculum and Syllabus

  1. MATH 574 Bayesian Computational Statistics, Illinois Tech
  2. STAT 695 - Bayesian Data Analysis, Purdue University
  3. STA360/601 - Bayesian Inference and Modern Statistical Methods, Duke University
  4. STAT 625: Advanced Bayesian Inference, Rice
  5. MSH3 - Advanced Bayesian Inference, University of Sydney

Blogs

  1. Count Bayesie by Will Kurt
  2. Evan Miller
  3. Healthy Algorithms
  4. Allen Downey
  5. Statistics Biophysics Blog
  6. Statistical Thinking by Frank Harrell
  7. Bayesian Statistics and Functional Programming
  8. Learning Bayesian Statistics

Web Articles

  1. Absolutely the simplest introduction to Bayesian statistics
  2. My Journey From Frequentist to Bayesian Statistics
  3. Frequentist vs. Bayesian approach in A/B testing
  4. Bayesian vs. Frequentist A/B Testing: What’s the Difference?
  5. Bayesian inference tutorial: a hello world example
  6. Nonparametric Bayesian Statistics
  7. A Guide to Bayesian Statistics
  8. Bayesian Priors for Parameter Estimation
  9. Bayesian Statistics Wikipedia
  10. Bayes’ Theorem: the maths tool we probably use every day, but what is it?
  11. Develop an Intuition for Bayes Theorem With Worked Examples
  12. Bayes Theorem, mathisfun.com
  13. Is Bayes' Theorem really that interesting?
  14. Understand Bayes’ Theorem Through Visualization
  15. Bayes's Theorem: What's the Big Deal?
  16. Bayes Theorem: A Framework for Critical Thinking
  17. Why testing positive for a disease may not mean you are sick. Visualization of the Bayes Theorem and Conditional Probability
  18. How To Use Bayes's Theorem In Real Life
  19. A Gentle Introduction to Markov Chain Monte Carlo for Probability
  20. Markov Chain Monte Carlo Without all the Bullshit
  21. How would you explain Markov Chain Monte Carlo (MCMC) to a layperson?
  22. Markov Chain Monte Carlo in Practice
  23. Causal Bayesian Networks: A flexible tool to enable fairer machine learning
  24. A Comprehensive Introduction to Bayesian Deep Learning
  25. A Technical Explanation of Technical Explanation
  26. An Intuitive Explanation of Bayes Theorem

Research Papers

  1. Primer on the Use of Bayesian Methods in Health Economics
  2. Experimental Design: Bayesian Designs
  3. A simple introduction to Markov Chain Monte-Carlo sampling
  4. Markov Chain Monte Carlo: an introduction for epidemiologists
  5. Monte Carlo simulation of climate systems
  6. What Are Hierarchical Models and How Do We Analyze Them?
  7. A Conceptual Introduction to Markov Chain Monte Carlo Methods
  8. Data Analysis Recipes: Using Markov Chain Monte Carlo
  9. A survey of Monte Carlo methods for parameter estimation
  10. Uncertain Neighbors: Bayesian Propensity Score Matching For Causal Inference
  11. Bayesian Matching for Causal Inference
  12. A Bayesian Approach for Estimating Causal Effects from Observational Data
  13. Bayesian Nonpar esian Nonparametric Methods F ametric Methods For Causal Inf or Causal Inference And ence And Prediction
  14. Is Microfinance Truly Useless for Poverty Reduction and Women Empowerment? A Bayesian Spatial-Propensity Score Matching Evaluation in Bolivia
  15. Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects
  16. State-of-the-BART: Simple Bayesian Tree Algorithms for Prediction and Causal Inference

People

  1. Andreas Krause, Professor of Computer Science, ETH Zurich
  2. Svetha Venkatesh, Professor of Computer Science, Deakin University
  3. Juergen Branke, Professor of Operational Research and Systems, Warwick Business School
  4. Michael A Osborne, Professor of Machine Learning, University of Oxford
  5. Matthias Seeger, Principal Applied Scientist, Amazon
  6. Eytan Bakshy, Research Director, Facebook
  7. Aaron Klein, AWS Research Berlin
  8. David Ginsbourger,University of Bern
  9. Jonathan Marchini, Head of Statistical Genetics and Methods, Regeneron Genetics Center
  10. Kyle Foreman, University of Washington
  11. Adrian E. Raftery, Professor of Statistics and Sociology, University of Washington
  12. Zoubin Ghahramani, Professor, University of Cambridge, and Distinguished Researcher, Google
  13. Jun S Liu, Professor of statistics, Harvard University
  14. David Dunson, Arts & Sciences Professor of Statistical Science & Mathematics, Duke
  15. Giovanni Parmigiani, Professor Department of Data Science, DFCI
  16. Aki Vehtari, Associate Professor, Aalto University
  17. Chiara Sabatti, Professor of Biomedical Data Science and of Statistics, Stanford University
  18. Peter E Rossi, James Collins Professor of Economics, Marketing, and Statistics, UCLA
Owner
Aayush Malik
Aayush Malik
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022