A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Overview

Awesome Bayesian Statistics

This is a repository that I created while learning Bayesian Statistics. It contains links to resources such as books, articles, magazines, research papers, and influential people in the domain of Bayesian Statistics. It will be helpful for beginners who want a one-stop access to all the resources at one place.

It is a collaborative work, so feel free to pull and add content to this. This way, we will be able to make it more community-driven.

Books

  1. Bayesian Statistics for Beginners: A Step-by-Step Approach, Therese M. Donovan (2019)
  2. Doing Bayesian Data Analysis: A Tutorial Introduction with R, John Kruschke (2010)
  3. Introduction to Bayesian Statistics, William M. Bolstad (2004)
  4. Bayesian Data Analysis, Donald Rubin (1995)
  5. Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks, Will Kurt (2019)
  6. A First Course in Bayesian Statistical Methods, Peter D Hoff (2009)
  7. Think Bayes: Bayesian Statistics in Python, Allen B. Downey (2012)
  8. A Student's Guide to Bayesian Statistics, Ben Lambert (2018)
  9. Bayesian Analysis with Python: Introduction to Statistical Modelling and Probabilistic Programming using PyMC3 and ArviZ, Osvaldo Martin (2016)
  10. Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference, Cameron Davidson-Pilon (2015)
  11. The Bayesian Way: Introduction Statistics for Economists and Engineers, Svein Olav Nyberg (2018)
  12. Bayesian Biostatistics, Emmanuel Lesaffre (2012)
  13. Bayes Theorem: A Visual Introduction for Beginners, Dan Morris (2017)
  14. Bayesian Econometrics, Gary Koop (2003)
  15. Regression Modelling with Spatial and Spatial-Temporal Data: A Bayesian Approach, Robert P. Haining (2019)
  16. Bayesian Reasoning and Machine Learning, David Barber (2012)

Courses

  1. Bayesian Statistics: From Concept to Data Analysis, University of California Santa Cruz
  2. Bayesian Methods for Machine Learning, HSE University
  3. Introduction to Bayesian Analysis Course with Python 2021, Udemy
  4. Bayesian Machine Learning in Python: A/B Testing, Udemy
  5. A Comprehensive Guide to Bayesian Statistics, Udemy
  6. Statistical Rethinking, Max Planck Institute for Evolutionary Anthropology, Leipzig
  7. Bayesian Statistics for the Social Science, Benjamin Goodrich, Columbia University New York
  8. Bayesian Data Analysis in Python, Datacamp

Curriculum and Syllabus

  1. MATH 574 Bayesian Computational Statistics, Illinois Tech
  2. STAT 695 - Bayesian Data Analysis, Purdue University
  3. STA360/601 - Bayesian Inference and Modern Statistical Methods, Duke University
  4. STAT 625: Advanced Bayesian Inference, Rice
  5. MSH3 - Advanced Bayesian Inference, University of Sydney

Blogs

  1. Count Bayesie by Will Kurt
  2. Evan Miller
  3. Healthy Algorithms
  4. Allen Downey
  5. Statistics Biophysics Blog
  6. Statistical Thinking by Frank Harrell
  7. Bayesian Statistics and Functional Programming
  8. Learning Bayesian Statistics

Web Articles

  1. Absolutely the simplest introduction to Bayesian statistics
  2. My Journey From Frequentist to Bayesian Statistics
  3. Frequentist vs. Bayesian approach in A/B testing
  4. Bayesian vs. Frequentist A/B Testing: What’s the Difference?
  5. Bayesian inference tutorial: a hello world example
  6. Nonparametric Bayesian Statistics
  7. A Guide to Bayesian Statistics
  8. Bayesian Priors for Parameter Estimation
  9. Bayesian Statistics Wikipedia
  10. Bayes’ Theorem: the maths tool we probably use every day, but what is it?
  11. Develop an Intuition for Bayes Theorem With Worked Examples
  12. Bayes Theorem, mathisfun.com
  13. Is Bayes' Theorem really that interesting?
  14. Understand Bayes’ Theorem Through Visualization
  15. Bayes's Theorem: What's the Big Deal?
  16. Bayes Theorem: A Framework for Critical Thinking
  17. Why testing positive for a disease may not mean you are sick. Visualization of the Bayes Theorem and Conditional Probability
  18. How To Use Bayes's Theorem In Real Life
  19. A Gentle Introduction to Markov Chain Monte Carlo for Probability
  20. Markov Chain Monte Carlo Without all the Bullshit
  21. How would you explain Markov Chain Monte Carlo (MCMC) to a layperson?
  22. Markov Chain Monte Carlo in Practice
  23. Causal Bayesian Networks: A flexible tool to enable fairer machine learning
  24. A Comprehensive Introduction to Bayesian Deep Learning
  25. A Technical Explanation of Technical Explanation
  26. An Intuitive Explanation of Bayes Theorem

Research Papers

  1. Primer on the Use of Bayesian Methods in Health Economics
  2. Experimental Design: Bayesian Designs
  3. A simple introduction to Markov Chain Monte-Carlo sampling
  4. Markov Chain Monte Carlo: an introduction for epidemiologists
  5. Monte Carlo simulation of climate systems
  6. What Are Hierarchical Models and How Do We Analyze Them?
  7. A Conceptual Introduction to Markov Chain Monte Carlo Methods
  8. Data Analysis Recipes: Using Markov Chain Monte Carlo
  9. A survey of Monte Carlo methods for parameter estimation
  10. Uncertain Neighbors: Bayesian Propensity Score Matching For Causal Inference
  11. Bayesian Matching for Causal Inference
  12. A Bayesian Approach for Estimating Causal Effects from Observational Data
  13. Bayesian Nonpar esian Nonparametric Methods F ametric Methods For Causal Inf or Causal Inference And ence And Prediction
  14. Is Microfinance Truly Useless for Poverty Reduction and Women Empowerment? A Bayesian Spatial-Propensity Score Matching Evaluation in Bolivia
  15. Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects
  16. State-of-the-BART: Simple Bayesian Tree Algorithms for Prediction and Causal Inference

People

  1. Andreas Krause, Professor of Computer Science, ETH Zurich
  2. Svetha Venkatesh, Professor of Computer Science, Deakin University
  3. Juergen Branke, Professor of Operational Research and Systems, Warwick Business School
  4. Michael A Osborne, Professor of Machine Learning, University of Oxford
  5. Matthias Seeger, Principal Applied Scientist, Amazon
  6. Eytan Bakshy, Research Director, Facebook
  7. Aaron Klein, AWS Research Berlin
  8. David Ginsbourger,University of Bern
  9. Jonathan Marchini, Head of Statistical Genetics and Methods, Regeneron Genetics Center
  10. Kyle Foreman, University of Washington
  11. Adrian E. Raftery, Professor of Statistics and Sociology, University of Washington
  12. Zoubin Ghahramani, Professor, University of Cambridge, and Distinguished Researcher, Google
  13. Jun S Liu, Professor of statistics, Harvard University
  14. David Dunson, Arts & Sciences Professor of Statistical Science & Mathematics, Duke
  15. Giovanni Parmigiani, Professor Department of Data Science, DFCI
  16. Aki Vehtari, Associate Professor, Aalto University
  17. Chiara Sabatti, Professor of Biomedical Data Science and of Statistics, Stanford University
  18. Peter E Rossi, James Collins Professor of Economics, Marketing, and Statistics, UCLA
Owner
Aayush Malik
Aayush Malik
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Microsoft 5.6k Jan 07, 2023
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022