MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

Overview

Multi-objective Optimized GBT(MooGBT)

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function. MooGBT uses a Augmented Lagrangian(AL) based constrained optimization framework with Gradient Boosted Trees, to optimize for multiple objectives.

With AL, we introduce dual variables in Boosting. The dual variables are iteratively optimized and fit within the Boosting iterations. The Boosting objective function is updated with the AL terms and the gradient is readily derived using the GBT gradients. With the gradient and updates of dual variables, we solve the optimization problem by jointly iterating AL and Boosting steps.

This library is motivated by work done in the paper Multi-objective Relevance Ranking, which introduces an Augmented Lagrangian based method to incorporate multiple objectives (MO) in LambdaMART, which is a GBT based search ranking algorithm.

We have modified the scikit-learn GBT implementation [3] to support multi-objective optimization.

Highlights -

  • follows the scikit-learn API conventions
  • supports all hyperparameters present in scikit-learn GBT
  • supports optimization for more than 1 sub-objectives

  • Current support -

  • MooGBTClassifier - "binomial deviance" loss function, for primary and sub-objectives represented as binary variables
  • MooGBTRegressor - "least squares" loss function, for primary and sub-objectives represented as continuous variables

  • Installation

    Moo-GBT can be installed from PyPI

    pip3 install moo-gbt

    Usage

    from multiobjective_gbt import MooGBTClassifier
    
    mu = 100
    b = 0.7 # upper bound on sub-objective cost
    
    constrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				constraints=[{"mu":mu, "b":b}], # One Constraint
    				random_state=2021
    )
    constrained_gbt.fit(X_train, y_train)

    Here y_train contains 2 columns, the first column should be the primary objective. The following columns are all the sub-objectives for which constraints have been specified(in the same order).


    Usage Steps

    1. Run unconstrained GBT on Primary Objective. Unconstrained GBT is just the GBTClassifer/GBTRegressor by scikit-learn
    2. Calculate the loss function value for Primary Objective and sub-objective(s)
      • For MooGBTClassifier calculate Log Loss between predicted probability and sub-objective label(s)
      • For MooGBTRegressor calculate mean squared error between predicted value and sub-objective label(s)
    3. Set the value of hyperparamter b, less than the calculated cost in the previous step and run MooGBTClassifer/MooGBTRegressor with this b. The lower the value of b, the more the sub-objective will be optimized

    Example with multiple binary objectives

    import pandas as pd
    import numpy as np
    import seaborn as sns
    
    from multiobjective_gbt import MooGBTClassifier

    We'll use a publicly available dataset - available here

    We define a multi-objective problem on the dataset, with the primary objective as the column "is_booking" and sub-objective as the column "is_package". Both these variables are binary.

    # Preprocessing Data
    train_data = pd.read_csv('examples/expedia-data/expedia-hotel-recommendations/train_data_sample.csv')
    
    po = 'is_booking' # primary objective
    so = 'is_package' # sub-objective
    
    features =  list(train_data.columns)
    features.remove(po)
    outcome_flag =  po
    
    # Train-Test Split
    X_train, X_test, y_train, y_test = train_test_split(
    					train_data[features],
    					train_data[outcome_flag],
    					test_size=0.2,
    					stratify=train_data[[po, so]],
    					random_state=2021
    )
    
    # Creating y_train_, y_test_ with 2 labels
    y_train_ = pd.DataFrame()
    y_train_[po] = y_train
    y_train_[so] = X_train[so]
    
    y_test_ = pd.DataFrame()
    y_test_[po] = y_test
    y_test_[so] = X_test[so]

    MooGBTClassifier without the constraint parameter, works as the standard scikit-learn GBT classifier.

    unconstrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				random_state=2021
    )
    
    unconstrained_gbt.fit(X_train, y_train)

    Get train and test sub-objective costs for unconstrained model.

    def get_binomial_deviance_cost(pred, y):
    	return -np.mean(y * np.log(pred) + (1-y) * np.log(1-pred))
    
    pred_train = unconstrained_gbt.predict_proba(X_train)[:,1]
    pred_test = unconstrained_gbt.predict_proba(X_test)[:,1]
    
    # get sub-objective costs
    so_train_cost = get_binomial_deviance_cost(pred_train, X_train[so])
    so_test_cost = get_binomial_deviance_cost(pred_test, X_test[so])
    
    print (f"""
    Sub-objective cost train - {so_train_cost},
    Sub-objective cost test  - {so_test_cost}
    """)
    Sub-objective cost train - 0.9114,
    Sub-objective cost test  - 0.9145
    

    Constraint is specified as an upper bound on the sub-objective cost. In the unconstrained model, we see the cost of our sub-objective to be ~0.9. So setting upper bounds below 0.9 would optimise the sub-objective.

    b = 0.65 # upper bound on cost
    mu = 100
    constrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				constraints=[{"mu":mu, "b":b}], # One Constraint
    				random_state=2021
    )
    
    constrained_gbt.fit(X_train, y_train_)

    From the constrained model, we achieve more than 100% gain in AuROC for the sub-objective while the loss in primary objective AuROC is kept within 6%. The entire study on this dataset can be found in the example notebook.

    Looking at MooGBT primary and sub-objective losses -

    To get raw values of loss functions wrt boosting iteration,

    # return a Pandas dataframe with loss values of objectives wrt boosting iteration
    losses = constrained_gbt.loss_.get_losses()
    losses.head()

    Similarly, you can also look at dual variable(alpha) values for sub-objective(s),

    To get raw values of alphas wrt boosting iteration,

    constrained_gbt.loss_.get_alphas()

    These losses can be used to look at the MooGBT Learning process.

    sns.lineplot(data=losses, x='n_estimators', y='primary_objective', label='primary objective')
    sns.lineplot(data=losses, x='n_estimators', y='sub_objective_1', label='subobjective')
    
    plt.xlabel("# estimators(trees)")
    plt.ylabel("Cost")
    plt.legend(loc = "upper right")

    sns.lineplot(data=losses, x='n_estimators', y='primary_objective', label='primary objective')

    Choosing the right upper bound constraint b and mu value

    The upper bound should be defined based on a acceptable % loss in the primary objective evaluation metric. For stricter upper bounds, this loss would be greater as MooGBT will optimize for the sub-objective more.

    Below table summarizes the effect of the upper bound value on the model performance for primary and sub-objective(s) for the above example.

    %gain specifies the percentage increase in AUROC for the constrained MooGBT model from an uncostrained GBT model.

    b Primary Objective - %gain Sub-Objective - %gain
    0.9 -0.7058 4.805
    0.8 -1.735 40.08
    0.7 -2.7852 62.7144
    0.65 -5.8242 113.9427
    0.6 -9.9137 159.8931

    In general, across our experiments we have found that lower values of mu optimize on the primary objective better while satisfying the sub-objective constraints given enough boosting iterations(n_estimators).

    The below table summarizes the results of varying mu values keeping the upper bound same(b=0.6).

    b mu Primary Objective - %gain Sub-objective - %gain
    0.6 1000 -20.6569 238.1388
    0.6 100 -13.3769 197.8186
    0.6 10 -9.9137 159.8931
    0.6 5 -8.643 146.4171

    MooGBT Learning Process

    MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function.

    MooGBT differs from a standard GBT in the loss function it optimizes the primary objective C1 and the sub-objectives using the Augmented Lagrangian(AL) constrained optimization approach.

    where α = [α1, α2, α3…..] is a vector of dual variables. The Lagrangian is solved by minimizing with respect to the primal variables "s" and maximizing with respect to the dual variables α. Augmented Lagrangian iteratively solves the constraint optimization. Since AL is an iterative approach we integerate it with the boosting iterations of GBT for updating the dual variable α.

    Alpha(α) update -

    At an iteration k, if the constraint t is not satisfied, i.e., Ct(s) > bt, we have  αtk > αtk-1. Otherwise, if the constraint is met, the dual variable α is made 0.

    Public contents

    • _gb.py: contains the MooGBTClassifier and MooGBTRegressor classes. Contains implementation of the fit and predict function. Extended implementation from _gb.py from scikit-learn.

    • _gb_losses.py: contains BinomialDeviance loss function class, LeastSquares loss function class. Extended implementation from _gb_losses.py from scikit-learn.

    More examples

    The examples directory contains several illustrations of how one can use this library:

    References - 

    [1] Multi-objective Ranking via Constrained Optimization - https://arxiv.org/pdf/2002.05753.pdf
    [2] Multi-objective Relevance Ranking - https://sigir-ecom.github.io/ecom2019/ecom19Papers/paper30.pdf
    [3] Scikit-learn GBT Implementation - GBTClassifier and GBTRegressor

    Owner
    Swiggy
    Swiggy
    Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

    Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

    The Learning Machines 1 Jan 16, 2022
    MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

    MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

    Swiggy 66 Dec 06, 2022
    Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

    Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

    Siva Prakash 5 Apr 05, 2022
    Machine learning template for projects based on sklearn library.

    Machine learning template for projects based on sklearn library.

    Janez Lapajne 17 Oct 28, 2022
    Implementation of different ML Algorithms from scratch, written in Python 3.x

    Implementation of different ML Algorithms from scratch, written in Python 3.x

    Gautam J 393 Nov 29, 2022
    A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

    imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

    6.2k Jan 01, 2023
    Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

    Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

    Thines Kumar 1 Jan 31, 2022
    A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

    Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

    Charles Turner 1 Feb 01, 2022
    A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

    MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

    Utsav 33 Dec 03, 2022
    Machine Learning Study 혼자 해보기

    Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

    Teddy Lee 1.7k Jan 01, 2023
    Predicting India’s COVID-19 Third Wave with LSTM

    Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

    Samrat Dutta 4 Jan 27, 2022
    Spark development environment for k8s

    Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

    Otacilio Filho 18 Jan 04, 2022
    stability-selection - A scikit-learn compatible implementation of stability selection

    stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

    185 Dec 03, 2022
    Forecast dynamically at scale with this unique package. pip install scalecast

    🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

    Michael Keith 158 Jan 03, 2023
    inding a method to objectively quantify skill versus chance in games, using reinforcement learning

    Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

    Marcus Chiam 4 Nov 19, 2022
    Machine Learning toolbox for Humans

    Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

    Yandex 663 Dec 31, 2022
    BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

    Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

    BentoML 4.4k Jan 04, 2023
    EbookMLCB - ebook Machine Learning cơ bản

    Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

    943 Jan 02, 2023
    Relevance Vector Machine implementation using the scikit-learn API.

    scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

    James Ritchie 204 Nov 18, 2022
    SPCL 48 Dec 12, 2022