MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

Overview

Multi-objective Optimized GBT(MooGBT)

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function. MooGBT uses a Augmented Lagrangian(AL) based constrained optimization framework with Gradient Boosted Trees, to optimize for multiple objectives.

With AL, we introduce dual variables in Boosting. The dual variables are iteratively optimized and fit within the Boosting iterations. The Boosting objective function is updated with the AL terms and the gradient is readily derived using the GBT gradients. With the gradient and updates of dual variables, we solve the optimization problem by jointly iterating AL and Boosting steps.

This library is motivated by work done in the paper Multi-objective Relevance Ranking, which introduces an Augmented Lagrangian based method to incorporate multiple objectives (MO) in LambdaMART, which is a GBT based search ranking algorithm.

We have modified the scikit-learn GBT implementation [3] to support multi-objective optimization.

Highlights -

  • follows the scikit-learn API conventions
  • supports all hyperparameters present in scikit-learn GBT
  • supports optimization for more than 1 sub-objectives

  • Current support -

  • MooGBTClassifier - "binomial deviance" loss function, for primary and sub-objectives represented as binary variables
  • MooGBTRegressor - "least squares" loss function, for primary and sub-objectives represented as continuous variables

  • Installation

    Moo-GBT can be installed from PyPI

    pip3 install moo-gbt

    Usage

    from multiobjective_gbt import MooGBTClassifier
    
    mu = 100
    b = 0.7 # upper bound on sub-objective cost
    
    constrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				constraints=[{"mu":mu, "b":b}], # One Constraint
    				random_state=2021
    )
    constrained_gbt.fit(X_train, y_train)

    Here y_train contains 2 columns, the first column should be the primary objective. The following columns are all the sub-objectives for which constraints have been specified(in the same order).


    Usage Steps

    1. Run unconstrained GBT on Primary Objective. Unconstrained GBT is just the GBTClassifer/GBTRegressor by scikit-learn
    2. Calculate the loss function value for Primary Objective and sub-objective(s)
      • For MooGBTClassifier calculate Log Loss between predicted probability and sub-objective label(s)
      • For MooGBTRegressor calculate mean squared error between predicted value and sub-objective label(s)
    3. Set the value of hyperparamter b, less than the calculated cost in the previous step and run MooGBTClassifer/MooGBTRegressor with this b. The lower the value of b, the more the sub-objective will be optimized

    Example with multiple binary objectives

    import pandas as pd
    import numpy as np
    import seaborn as sns
    
    from multiobjective_gbt import MooGBTClassifier

    We'll use a publicly available dataset - available here

    We define a multi-objective problem on the dataset, with the primary objective as the column "is_booking" and sub-objective as the column "is_package". Both these variables are binary.

    # Preprocessing Data
    train_data = pd.read_csv('examples/expedia-data/expedia-hotel-recommendations/train_data_sample.csv')
    
    po = 'is_booking' # primary objective
    so = 'is_package' # sub-objective
    
    features =  list(train_data.columns)
    features.remove(po)
    outcome_flag =  po
    
    # Train-Test Split
    X_train, X_test, y_train, y_test = train_test_split(
    					train_data[features],
    					train_data[outcome_flag],
    					test_size=0.2,
    					stratify=train_data[[po, so]],
    					random_state=2021
    )
    
    # Creating y_train_, y_test_ with 2 labels
    y_train_ = pd.DataFrame()
    y_train_[po] = y_train
    y_train_[so] = X_train[so]
    
    y_test_ = pd.DataFrame()
    y_test_[po] = y_test
    y_test_[so] = X_test[so]

    MooGBTClassifier without the constraint parameter, works as the standard scikit-learn GBT classifier.

    unconstrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				random_state=2021
    )
    
    unconstrained_gbt.fit(X_train, y_train)

    Get train and test sub-objective costs for unconstrained model.

    def get_binomial_deviance_cost(pred, y):
    	return -np.mean(y * np.log(pred) + (1-y) * np.log(1-pred))
    
    pred_train = unconstrained_gbt.predict_proba(X_train)[:,1]
    pred_test = unconstrained_gbt.predict_proba(X_test)[:,1]
    
    # get sub-objective costs
    so_train_cost = get_binomial_deviance_cost(pred_train, X_train[so])
    so_test_cost = get_binomial_deviance_cost(pred_test, X_test[so])
    
    print (f"""
    Sub-objective cost train - {so_train_cost},
    Sub-objective cost test  - {so_test_cost}
    """)
    Sub-objective cost train - 0.9114,
    Sub-objective cost test  - 0.9145
    

    Constraint is specified as an upper bound on the sub-objective cost. In the unconstrained model, we see the cost of our sub-objective to be ~0.9. So setting upper bounds below 0.9 would optimise the sub-objective.

    b = 0.65 # upper bound on cost
    mu = 100
    constrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				constraints=[{"mu":mu, "b":b}], # One Constraint
    				random_state=2021
    )
    
    constrained_gbt.fit(X_train, y_train_)

    From the constrained model, we achieve more than 100% gain in AuROC for the sub-objective while the loss in primary objective AuROC is kept within 6%. The entire study on this dataset can be found in the example notebook.

    Looking at MooGBT primary and sub-objective losses -

    To get raw values of loss functions wrt boosting iteration,

    # return a Pandas dataframe with loss values of objectives wrt boosting iteration
    losses = constrained_gbt.loss_.get_losses()
    losses.head()

    Similarly, you can also look at dual variable(alpha) values for sub-objective(s),

    To get raw values of alphas wrt boosting iteration,

    constrained_gbt.loss_.get_alphas()

    These losses can be used to look at the MooGBT Learning process.

    sns.lineplot(data=losses, x='n_estimators', y='primary_objective', label='primary objective')
    sns.lineplot(data=losses, x='n_estimators', y='sub_objective_1', label='subobjective')
    
    plt.xlabel("# estimators(trees)")
    plt.ylabel("Cost")
    plt.legend(loc = "upper right")

    sns.lineplot(data=losses, x='n_estimators', y='primary_objective', label='primary objective')

    Choosing the right upper bound constraint b and mu value

    The upper bound should be defined based on a acceptable % loss in the primary objective evaluation metric. For stricter upper bounds, this loss would be greater as MooGBT will optimize for the sub-objective more.

    Below table summarizes the effect of the upper bound value on the model performance for primary and sub-objective(s) for the above example.

    %gain specifies the percentage increase in AUROC for the constrained MooGBT model from an uncostrained GBT model.

    b Primary Objective - %gain Sub-Objective - %gain
    0.9 -0.7058 4.805
    0.8 -1.735 40.08
    0.7 -2.7852 62.7144
    0.65 -5.8242 113.9427
    0.6 -9.9137 159.8931

    In general, across our experiments we have found that lower values of mu optimize on the primary objective better while satisfying the sub-objective constraints given enough boosting iterations(n_estimators).

    The below table summarizes the results of varying mu values keeping the upper bound same(b=0.6).

    b mu Primary Objective - %gain Sub-objective - %gain
    0.6 1000 -20.6569 238.1388
    0.6 100 -13.3769 197.8186
    0.6 10 -9.9137 159.8931
    0.6 5 -8.643 146.4171

    MooGBT Learning Process

    MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function.

    MooGBT differs from a standard GBT in the loss function it optimizes the primary objective C1 and the sub-objectives using the Augmented Lagrangian(AL) constrained optimization approach.

    where α = [α1, α2, α3…..] is a vector of dual variables. The Lagrangian is solved by minimizing with respect to the primal variables "s" and maximizing with respect to the dual variables α. Augmented Lagrangian iteratively solves the constraint optimization. Since AL is an iterative approach we integerate it with the boosting iterations of GBT for updating the dual variable α.

    Alpha(α) update -

    At an iteration k, if the constraint t is not satisfied, i.e., Ct(s) > bt, we have  αtk > αtk-1. Otherwise, if the constraint is met, the dual variable α is made 0.

    Public contents

    • _gb.py: contains the MooGBTClassifier and MooGBTRegressor classes. Contains implementation of the fit and predict function. Extended implementation from _gb.py from scikit-learn.

    • _gb_losses.py: contains BinomialDeviance loss function class, LeastSquares loss function class. Extended implementation from _gb_losses.py from scikit-learn.

    More examples

    The examples directory contains several illustrations of how one can use this library:

    References - 

    [1] Multi-objective Ranking via Constrained Optimization - https://arxiv.org/pdf/2002.05753.pdf
    [2] Multi-objective Relevance Ranking - https://sigir-ecom.github.io/ecom2019/ecom19Papers/paper30.pdf
    [3] Scikit-learn GBT Implementation - GBTClassifier and GBTRegressor

    Owner
    Swiggy
    Swiggy
    Python bindings for MPI

    MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

    MPI for Python 604 Dec 29, 2022
    Learning --> Numpy January 2022 - winter'22

    Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

    Shahzaneer Ahmed 0 Mar 12, 2022
    Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

    Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

    Thines Kumar 1 Jan 31, 2022
    This is the material used in my free Persian course: Machine Learning with Python

    This is the material used in my free Persian course: Machine Learning with Python

    Yara Mohamadi 4 Aug 07, 2022
    Simple data balancing baselines for worst-group-accuracy benchmarks.

    BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

    Facebook Research 29 Dec 02, 2022
    Forecasting prices using Facebook/Meta's Prophet model

    CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

    1 Nov 27, 2021
    Predict the income for each percentile of the population (Python) - FRENCH

    05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

    1 Feb 13, 2022
    Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

    Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

    Thoughtworks 318 Jan 02, 2023
    A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

    Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

    Microsoft 14.5k Jan 07, 2023
    Python 3.6+ toolbox for submitting jobs to Slurm

    Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

    Facebook Incubator 768 Jan 03, 2023
    A comprehensive repository containing 30+ notebooks on learning machine learning!

    A comprehensive repository containing 30+ notebooks on learning machine learning!

    Jean de Dieu Nyandwi 3.8k Jan 09, 2023
    Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

    Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

    Facebook 15.4k Jan 07, 2023
    LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

    LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

    5 Aug 06, 2022
    🤖 ⚡ scikit-learn tips

    🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

    Kevin Markham 1.6k Jan 03, 2023
    Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

    Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

    Sangeeth Mathew John 2 Dec 14, 2021
    Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

    Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

    The Learning Machines 1 Jan 16, 2022
    Deploy AutoML as a service using Flask

    AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

    Chris Rawles 221 Nov 04, 2022
    A Lucid Framework for Transparent and Interpretable Machine Learning Models.

    Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

    lucidmode 15 Aug 12, 2022
    Educational python for Neural Networks, written in pure Python/NumPy.

    Educational python for Neural Networks, written in pure Python/NumPy.

    127 Oct 27, 2022
    AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

    English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

    4Paradigm 431 Dec 28, 2022