MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

Overview

Multi-objective Optimized GBT(MooGBT)

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function. MooGBT uses a Augmented Lagrangian(AL) based constrained optimization framework with Gradient Boosted Trees, to optimize for multiple objectives.

With AL, we introduce dual variables in Boosting. The dual variables are iteratively optimized and fit within the Boosting iterations. The Boosting objective function is updated with the AL terms and the gradient is readily derived using the GBT gradients. With the gradient and updates of dual variables, we solve the optimization problem by jointly iterating AL and Boosting steps.

This library is motivated by work done in the paper Multi-objective Relevance Ranking, which introduces an Augmented Lagrangian based method to incorporate multiple objectives (MO) in LambdaMART, which is a GBT based search ranking algorithm.

We have modified the scikit-learn GBT implementation [3] to support multi-objective optimization.

Highlights -

  • follows the scikit-learn API conventions
  • supports all hyperparameters present in scikit-learn GBT
  • supports optimization for more than 1 sub-objectives

  • Current support -

  • MooGBTClassifier - "binomial deviance" loss function, for primary and sub-objectives represented as binary variables
  • MooGBTRegressor - "least squares" loss function, for primary and sub-objectives represented as continuous variables

  • Installation

    Moo-GBT can be installed from PyPI

    pip3 install moo-gbt

    Usage

    from multiobjective_gbt import MooGBTClassifier
    
    mu = 100
    b = 0.7 # upper bound on sub-objective cost
    
    constrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				constraints=[{"mu":mu, "b":b}], # One Constraint
    				random_state=2021
    )
    constrained_gbt.fit(X_train, y_train)

    Here y_train contains 2 columns, the first column should be the primary objective. The following columns are all the sub-objectives for which constraints have been specified(in the same order).


    Usage Steps

    1. Run unconstrained GBT on Primary Objective. Unconstrained GBT is just the GBTClassifer/GBTRegressor by scikit-learn
    2. Calculate the loss function value for Primary Objective and sub-objective(s)
      • For MooGBTClassifier calculate Log Loss between predicted probability and sub-objective label(s)
      • For MooGBTRegressor calculate mean squared error between predicted value and sub-objective label(s)
    3. Set the value of hyperparamter b, less than the calculated cost in the previous step and run MooGBTClassifer/MooGBTRegressor with this b. The lower the value of b, the more the sub-objective will be optimized

    Example with multiple binary objectives

    import pandas as pd
    import numpy as np
    import seaborn as sns
    
    from multiobjective_gbt import MooGBTClassifier

    We'll use a publicly available dataset - available here

    We define a multi-objective problem on the dataset, with the primary objective as the column "is_booking" and sub-objective as the column "is_package". Both these variables are binary.

    # Preprocessing Data
    train_data = pd.read_csv('examples/expedia-data/expedia-hotel-recommendations/train_data_sample.csv')
    
    po = 'is_booking' # primary objective
    so = 'is_package' # sub-objective
    
    features =  list(train_data.columns)
    features.remove(po)
    outcome_flag =  po
    
    # Train-Test Split
    X_train, X_test, y_train, y_test = train_test_split(
    					train_data[features],
    					train_data[outcome_flag],
    					test_size=0.2,
    					stratify=train_data[[po, so]],
    					random_state=2021
    )
    
    # Creating y_train_, y_test_ with 2 labels
    y_train_ = pd.DataFrame()
    y_train_[po] = y_train
    y_train_[so] = X_train[so]
    
    y_test_ = pd.DataFrame()
    y_test_[po] = y_test
    y_test_[so] = X_test[so]

    MooGBTClassifier without the constraint parameter, works as the standard scikit-learn GBT classifier.

    unconstrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				random_state=2021
    )
    
    unconstrained_gbt.fit(X_train, y_train)

    Get train and test sub-objective costs for unconstrained model.

    def get_binomial_deviance_cost(pred, y):
    	return -np.mean(y * np.log(pred) + (1-y) * np.log(1-pred))
    
    pred_train = unconstrained_gbt.predict_proba(X_train)[:,1]
    pred_test = unconstrained_gbt.predict_proba(X_test)[:,1]
    
    # get sub-objective costs
    so_train_cost = get_binomial_deviance_cost(pred_train, X_train[so])
    so_test_cost = get_binomial_deviance_cost(pred_test, X_test[so])
    
    print (f"""
    Sub-objective cost train - {so_train_cost},
    Sub-objective cost test  - {so_test_cost}
    """)
    Sub-objective cost train - 0.9114,
    Sub-objective cost test  - 0.9145
    

    Constraint is specified as an upper bound on the sub-objective cost. In the unconstrained model, we see the cost of our sub-objective to be ~0.9. So setting upper bounds below 0.9 would optimise the sub-objective.

    b = 0.65 # upper bound on cost
    mu = 100
    constrained_gbt = MooGBTClassifier(
    				loss='deviance',
    				n_estimators=100,
    				constraints=[{"mu":mu, "b":b}], # One Constraint
    				random_state=2021
    )
    
    constrained_gbt.fit(X_train, y_train_)

    From the constrained model, we achieve more than 100% gain in AuROC for the sub-objective while the loss in primary objective AuROC is kept within 6%. The entire study on this dataset can be found in the example notebook.

    Looking at MooGBT primary and sub-objective losses -

    To get raw values of loss functions wrt boosting iteration,

    # return a Pandas dataframe with loss values of objectives wrt boosting iteration
    losses = constrained_gbt.loss_.get_losses()
    losses.head()

    Similarly, you can also look at dual variable(alpha) values for sub-objective(s),

    To get raw values of alphas wrt boosting iteration,

    constrained_gbt.loss_.get_alphas()

    These losses can be used to look at the MooGBT Learning process.

    sns.lineplot(data=losses, x='n_estimators', y='primary_objective', label='primary objective')
    sns.lineplot(data=losses, x='n_estimators', y='sub_objective_1', label='subobjective')
    
    plt.xlabel("# estimators(trees)")
    plt.ylabel("Cost")
    plt.legend(loc = "upper right")

    sns.lineplot(data=losses, x='n_estimators', y='primary_objective', label='primary objective')

    Choosing the right upper bound constraint b and mu value

    The upper bound should be defined based on a acceptable % loss in the primary objective evaluation metric. For stricter upper bounds, this loss would be greater as MooGBT will optimize for the sub-objective more.

    Below table summarizes the effect of the upper bound value on the model performance for primary and sub-objective(s) for the above example.

    %gain specifies the percentage increase in AUROC for the constrained MooGBT model from an uncostrained GBT model.

    b Primary Objective - %gain Sub-Objective - %gain
    0.9 -0.7058 4.805
    0.8 -1.735 40.08
    0.7 -2.7852 62.7144
    0.65 -5.8242 113.9427
    0.6 -9.9137 159.8931

    In general, across our experiments we have found that lower values of mu optimize on the primary objective better while satisfying the sub-objective constraints given enough boosting iterations(n_estimators).

    The below table summarizes the results of varying mu values keeping the upper bound same(b=0.6).

    b mu Primary Objective - %gain Sub-objective - %gain
    0.6 1000 -20.6569 238.1388
    0.6 100 -13.3769 197.8186
    0.6 10 -9.9137 159.8931
    0.6 5 -8.643 146.4171

    MooGBT Learning Process

    MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function.

    MooGBT differs from a standard GBT in the loss function it optimizes the primary objective C1 and the sub-objectives using the Augmented Lagrangian(AL) constrained optimization approach.

    where α = [α1, α2, α3…..] is a vector of dual variables. The Lagrangian is solved by minimizing with respect to the primal variables "s" and maximizing with respect to the dual variables α. Augmented Lagrangian iteratively solves the constraint optimization. Since AL is an iterative approach we integerate it with the boosting iterations of GBT for updating the dual variable α.

    Alpha(α) update -

    At an iteration k, if the constraint t is not satisfied, i.e., Ct(s) > bt, we have  αtk > αtk-1. Otherwise, if the constraint is met, the dual variable α is made 0.

    Public contents

    • _gb.py: contains the MooGBTClassifier and MooGBTRegressor classes. Contains implementation of the fit and predict function. Extended implementation from _gb.py from scikit-learn.

    • _gb_losses.py: contains BinomialDeviance loss function class, LeastSquares loss function class. Extended implementation from _gb_losses.py from scikit-learn.

    More examples

    The examples directory contains several illustrations of how one can use this library:

    References - 

    [1] Multi-objective Ranking via Constrained Optimization - https://arxiv.org/pdf/2002.05753.pdf
    [2] Multi-objective Relevance Ranking - https://sigir-ecom.github.io/ecom2019/ecom19Papers/paper30.pdf
    [3] Scikit-learn GBT Implementation - GBTClassifier and GBTRegressor

    Owner
    Swiggy
    Swiggy
    Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

    Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

    164 Jan 04, 2023
    LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

    LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

    Amichay Oren 458 Dec 24, 2022
    A concept I came up which ditches the idea of "layers" in a neural network.

    Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

    Anik Patel 4 Dec 05, 2021
    Test symmetries with sklearn decision tree models

    Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

    Rupert Tombs 2 Jul 19, 2022
    Diabetes Prediction with Logistic Regression

    Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

    AZİZE SULTAN PALALI 2 Oct 23, 2021
    MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

    MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

    Swiggy 66 Dec 06, 2022
    Estudos e projetos feitos com PySpark.

    PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

    Karinne Cristina 54 Nov 06, 2022
    A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

    pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

    alkaline-ml 1.3k Dec 22, 2022
    Greykite: A flexible, intuitive and fast forecasting library

    The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

    LinkedIn 1.4k Jan 15, 2022
    Accelerating model creation and evaluation.

    EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

    Yusuf 0 Dec 06, 2021
    Uplift modeling and causal inference with machine learning algorithms

    Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

    Uber Open Source 3.7k Jan 07, 2023
    Tribuo - A Java machine learning library

    Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

    Oracle 1.1k Dec 28, 2022
    A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

    matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

    Target 696 Dec 26, 2022
    TensorFlow implementation of an arbitrary order Factorization Machine

    This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d

    Mikhail Trofimov 785 Dec 21, 2022
    PennyLane is a cross-platform Python library for differentiable programming of quantum computers

    PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

    PennyLaneAI 1.6k Jan 01, 2023
    Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

    📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

    Claudia dos Anjos 1 Jan 05, 2022
    Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

    Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

    Aman Chadha 173 Jan 05, 2023
    A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

    Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

    davidgasinski 1 Oct 28, 2021
    Gaussian Process Optimization using GPy

    End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

    Sheffield Machine Learning Software 847 Dec 19, 2022
    Climin is a Python package for optimization, heavily biased to machine learning scenarios

    climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

    Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022