CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

Overview

SmartSim Example Zoo

This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

The CrayLabs team will attempt to keep examples updated with current releases but all user contibuted examples should specify the release they were created with.

Contibuting Examples

We welcome any and all contibutions to this repository. The CrayLabs team will do their best to review in a timely manner. We ask that, if you contribute examples, please include a description and all references to code and relavent previous implemenations or open source code that the work is based off of for the benefit of anyone who would like to try out your example.

Examples by Paper

The following examples are implemented based on existing research papers. Each example lists the paper, previous works, and links to the implementation (possibly stored within this repository or a seperate repository)

1. DeepDriveMD

  • Contibuting User: CrayLabs
  • Tags: OpenMM, CVAE, online inference, unsupervised online learning, PyTorch, ensemble

This use case highlights many features of SmartSim and SmartRedis and together they can be used to orchestrate complex workflows with coupled applications without using the filesystem for exchanging information.

More specifically, this use case is based on the original DeepDriveMD work. DeepDriveMD was furthered with an asynchronous streaming version. SmartSim extends the streaming implementation through the use of the SmartSim architecture. The main difference between the SmartSim implementation and the previous implementations, is that neither ML models, nor Molecular Dynamics (MD) intermediate results are stored on the file system. Additionally, the inference portion of the workflow takes place inside the database instead of a seperate task launched on the system.

2. TensorFlowFoam

  • Contributing User: CrayLabs
  • Tags: Online Inference, TensorFlow, OpenFOAM, supervised learning

This example shows how to use TensorFlow inside of OpenFOAM simulations using SmartSim.

More specifically, this SmartSim use case adapts the TensorFlowFoam work which utilized a deep neural network to predict steady-state turbulent viscosities of the Spalart-Allmaras (SA) model. This use case highlights that a machine learning model can be evaluated using SmartSim from within a simulation with minimal external library code. For the OpenFOAM use case herein, only four SmartRedis client API calls are needed to initialize a client connection, send tensor data for evaluation, execute the TensorFlow model, and retrieve the model inference result.

In general, this example provides a useful driver script for those looking to run OpenFOAM with SmartSim.

3. ML-EKE

  • Contributing User: CrayLabs
  • Tags: Online inference, MOM6, climate modeling, ensemble, parameterization replacement

This example was a collaboration between CrayLabs (HPE), NCAR, and the university of Victoria. Using SmartSim, this example shows how to run an ensemble of simulations all using the SmartSim architecture to replace a parameterization (MEKE) within each global ocean simulation (MOM6).

Paper Abstract:

We demonstrate the first climate-scale, numerical ocean simulations improved through distributed, online inference of Deep Neural Networks (DNN) using SmartSim. SmartSim is a library dedicated to enabling online analysis and Machine Learning (ML) for traditional HPC simulations. In this paper, we detail the SmartSim architecture and provide benchmarks including online inference with a shared ML model on heterogeneous HPC systems. We demonstrate the capability of SmartSim by using it to run a 12-member ensemble of global-scale, high-resolution ocean simulations, each spanning 19 compute nodes, all communicating with the same ML architecture at each simulation timestep. In total, 970 billion inferences are collectively served by running the ensemble for a total of 120 simulated years. Finally, we show our solution is stable over the full duration of the model integrations, and that the inclusion of machine learning has minimal impact on the simulation runtimes.

Since this is original research done by CrayLabs, there is no previous implementation.

Examples by Simulation Model

LAMMPS

SmartSim examples with LAMMPS which is a Molecular Dynamics simulation model.

1. Online Analysis of Atom Position

  • Contibuting User: CrayLabs
  • Tags: Molecular Dynamics, online analysis, visualizations.

LAMMPS has dump styles which are custom I/O methods that can be implmentated by users. CrayLabs implemented a SMARTSIM dump style which uses the SmartRedis clients to stream data to an Orchestrator database created by SmartSim.

Once the data is in the database, any application with a SmartRedis client can consume that data. For this example, we have a simple Python script that uses iPyVolume to plot the data every 100 iterations.

Examples by System

High Performance Computing Systems are a bit like snowflakes, they are all different. Since each one has their own quirks, some examples for specific and popular systems can be of benefit to new users.

National Center for Atmospheric Research (NCAR)

1. Cheyenne

  • Contibuting User: CrayLabs
  • implementation (this repo)
  • WLM: PBSPro
  • System: SGI 8600
  • CPU: intel
  • GPU: None

2. Casper

  • Contibuting user: @jedwards4b
  • Implementation (this repo)
  • WLM: PBSPro
  • GPU: Nvidia
  • CPU: Intel
  • SmartSim Version: 0.3.2
  • SmartRedis Version: 0.2.0

Oak Ridge National Lab

1. Summit

  • Contributing user: CrayLabs
  • implementation (this repo)
  • System:
  • OS: Red Hat Enterprise Linux (RHEL)
  • CPU: Power9
  • GPU: Nvidia V100
Owner
Cray Labs
Cray Labs
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022