Summer: compartmental disease modelling in Python

Overview

Summer: compartmental disease modelling in Python

Automated Tests

Summer is a Python-based framework for the creation and execution of compartmental (or "state-based") epidemiological models of infectious disease transmission.

It provides a range of structures for easily implementing compartmental models, including structure for some of the most common features added to basic compartmental frameworks, including:

  • A variety of inter-compartmental flows (infections, transitions, births, deaths, imports)
  • Force of infection multipliers (frequency, density)
  • Post-processing of compartment sizes into derived outputs
  • Stratification of compartments, including:
    • Adjustments to flow rates based on strata
    • Adjustments to infectiousness based on strata
    • Heterogeneous mixing between strata
    • Multiple disease strains

Some helpful links to learn more:

Installation and Quickstart

This project is tested with Python 3.6. Install the summerepi package from PyPI

pip install summerepi

Then you can use the library to build and run models. See here for some code examples.

Development

Poetry is used for packaging and dependency management.

Initial project setup is documented here and should work for Windows or Ubuntu, maybe for MacOS.

Some common things to do as a developer working on this codebase:

# Activate summer conda environment prior to doing other stuff (see setup docs)
conda activate summer

# Install latest requirements
poetry install

# Publish to PyPI - use your PyPI credentials
poetry publish --build

# Add a new package
poetry add

# Run tests
pytest -vv

# Format Python code
black .
isort . --profile black

Releases

Releases are numbered using Semantic Versioning

  • 1.0.0/1:
    • Initial release
  • 1.1.0:
    • Add stochastic integrator
  • 2.0.2:
    • Rename fractional flow to transition flow
    • Remove sojourn flow
    • Add vectorized backend and other performance improvements
  • 2.0.3:
    • Set default IVP solver to use a maximum step size of 1 timestep
  • 2.0.4:
    • Add runtime derived values
  • 2.0.5:
    • Remove legacy Summer implementation
  • 2.1.0:
    • Add AdjustmentSystems
    • Improve vectorization of flows
    • Add computed_values inputs to flow and adjustment parameters
  • 2.1.1:
    • Fix for invalid/unused package imports (cachetools)
  • 2.2.0
    • Add validation and compartment caching optimizations
  • 2.2.1
    • Derived output index caching
    • Optimized fast-tracks for infectious multipliers
  • 2.2.2
    • JIT infectiousness calculations
    • Various micro-optimizations
  • 2.2.3
    • Bugfix release (clamp outputs to 0.0)
  • 2.2.4
    • Datetime awareness, DataFrame outputs

Release process

To do a release:

  • Commit any code changes and push them to GitHub
  • Choose a new release number accoridng to Semantic Versioning
  • Add a release note above
  • Edit the version key in pyproject.toml to reflect the release number
  • Publish the package to PyPI using Poetry, you will need a PyPI login and access to the project
  • Commit the release changes and push them to GitHub (Use a commit message like "Release 1.1.0")
  • Update requirements.txt in Autumn to use the new version of Summer
poetry build
poetry publish

Documentation

Sphinx is used to automatically build reference documentation for this library. The documentation is automatically built and deployed to summerepi.com whenever code is pushed to master.

To run or edit the code examples in the documentation, start a jupyter notebook server as follows:

jupyter notebook --config docs/jupyter_notebook_config.py
# Go to http://localhost:8888/tree/docs/examples in your web browser.

You can clean outputs from all the example notbooks with

./docs/scripts/clean.sh

To build and deploy

./docs/scripts/build.sh
./docs/scripts/deploy.sh

To work on docs locally

./docs/scripts/watch.sh
You might also like...
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

[HELP REQUESTED] Generalized Additive Models in Python
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

MLBox is a powerful Automated Machine Learning python library.
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Python package for stacking (machine learning technique)
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

Comments
  • Vectorized backend and support code

    Vectorized backend and support code

    This is the fast vectorized backend we've been discussing lately. It runs our covid model ~3x faster than the reference.

    Wanting to get this merged sooner rather than later to avoid code drift. Matt has looked at this already, feedback from James appreciated

    opened by dshipman 0
Releases(v1.0.1)
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022