Both social media sentiment and stock market data are crucial for stock price prediction

Overview

Relating Social Media to Stock Movements_DA-31st-December

Both social media sentiment and stock market data are crucial for stock price prediction. So, in this project we analyzed the dynamics of stock markets based on both social media news (text data) and stock prices (numerical data).

Understanding the Dataset

The dataset we are working on is a combination of Wallstreetbets-Reddit news and the Standard & Poor’s 500 (S&p 500) stock price from 2013 to 2018.

  • The news dataset contains the top 25 news from Reddit on each day from 2013 to 2018.

  • The S&P 500 contains the core stock market information for each day such as Open, Close, and Volume.

  • The SCORE of the dataset is whether the stock price is increase (labeled as 1) or decrease (labeled as 0) on that day.

EDA

Introduction:

  • data dataset comprises 5698 rows and 8 columns.
  • Dataset consists of continuous variable and float data type.
  • Dataset column variables 'Open', 'Close', 'High', 'Low', 'Volume', are the stock variables from historical dataset and other variables are showing polarity of news which are the derived variables using sentiment analysis as discussed in the above section.

Descriptive Statistics:

Using describe() we could get the following result for the numerical features

open high low close volume count 5697.000000 5697.000000 5697.000000 5698.000000 5.698000e+03 mean 88.139399 89.012936 87.245609 88.146015 1.718703e+06 std 32.666995 32.960833 32.363413 32.660301 1.248357e+06 min 30.380000 31.090000 29.730000 29.940000 1.000000e+02 25% 64.650000 65.310000 64.053300 64.672500 9.880475e+05 50% 80.750000 81.490000 79.990000 80.750000 1.460298e+06 75% 105.270000 106.270000 104.350000 105.345000 2.135991e+06 max 201.240000 201.240000 198.160000 200.380000 3.378024e+07

Preprocessing and Sentiment Analysis

We filled out the NaN values in the missed three topics. And got the polarity and subjectivity for the news' topics. Polarity is of 'float' type and lies in the range of -1, 1, where 1

means a high positive sentiment, and -1 means a high negative sentiment.

So, they will be very helpful in determining the increase or decrease of the stock market.

Then we checked the missing values in the stock market information, it was complete. Then we merged the sentiment information (polarity ) by date with the stock market information (Open, High, Low, Close, Volume, Adj Close) in merged_data dataframe.

Before modeling and after splitting we scaled the data using standardization to shift the distribution to have a mean of zero and a standard deviation of one.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler().fit(X_train)
rescaledX = scaler.transform(X_train)
rescaledValidationX = scaler.transform(X_valid)

fit_transform() is used on the training data so that we can scale the training data and also learn the scaling parameters of that data. Here, the model built by us will learn the mean and variance of the features of the training set. These learned parameters are then used to scale our test data.

transform() uses the same mean and variance as it is calculated from our training data to transform our test data. Thus, the parameters learned by our model using the training data will help us to transform our test data. As we do not want to be biased with our model, but we want our test data to be completely new and a surprise set for our model.

Preprocessing Again

Now, after observing the outliers in polarity of a lot of topics, we decided to concatenate all the 14 topics in one paragraph, then we can get only one column for polarity. So, we merged these data again with the stock market numerical information and got merged_data dataframe, then scaled it.

Model Building

Metrics considered for Model Evaluation

Accuracy , Precision , Recall and F1 Score

  • Accuracy: What proportion of actual positives and negatives is correctly classified?
  • Precision: What proportion of predicted positives are truly positive ?
  • Recall: What proportion of actual positives is correctly classified ?
  • F1 Score : Harmonic mean of Precision and Recall

Logistic Regression

  • Logistic Regression helps find how probabilities are changed with actions.
  • The function is defined as P(y) = 1 / 1+e^-(A+Bx)
  • Logistic regression involves finding the best fit S-curve where A is the intercept and B is the regression coefficient. The output of logistic regression is a probability score.

Choosing the features

After choosing model based on confusion matrix here where choose the features taking in consideration the deployment phase.

We know from the EDA that all the features are highly correlated and almost follow the same trend among the time. So, along with polarity and subjectivity we choose the open price with the assumption that the user knows the open price but not the close price and wants to figure out if the stock price will increase or decrease.

When we apply the logistic regression model accuracy dropped from 80% to 55%. So, we will use both Open and Close and exclude High, Low, Volume, Adj Close.

precision    recall  f1-score   support

           0       1.00      1.00      1.00   2563950
           1       0.00      0.00      0.00       968

    accuracy                           1.00   2564918
   macro avg       0.50      0.50      0.50   2564918
weighted avg       1.00      1.00      1.00   2564918







Owner
Vishal Singh Parmar
I am Vishal Singh Parmar, I have been pursuing B.Tech in Computer Science Engineering from Shivaji Rao Kadam Institute of Technology,
Vishal Singh Parmar
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021