Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Overview

Project Name : Steganography-Tools

Made By - Priyansh Sharma

  • Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.
  • This project hides the message with in the image, text file, audio file and video file. In this project, the sender selects a cover file (image, text, audio or video) with secret text and hide it into the cover file by using different efficient algorithm and generate a stego file of same format as our cover file (image, text, audio or video). Then the stego file is sent to the destination with the help of private or public communication networks. On the other side i.e. receiver, the receiver downloads the stego file and by using the appropriate decoding algorithm retrieves the secret text that is hidden in the stego file.

1

Image Steganography ( Hiding TEXT in IMAGE ) :

  • Using Least Significant Bit Insertion we overwrite the LSB bit of actual image with the bit of text message character. At the end of text message we push a delimiter to the message string as a checkpoint useful in decoding function. We encode data in order of Red, then Green and then Blue pixel for the entire message.

Text Steganography ( Hiding TEXT in TEXT ) :

  • In Unicode, there are specific zero-width characters (ZWC). We used four ZWCs for hiding the Secret Message through the Cover Text.

image

  • We get its ascii value and it is incremented or decremented based on if ascii value between 32 and 64 , it is incremented by 48(ascii value for 0) else it is decremented by 48
  • Then xor the the obtained value with 170(binary equivalent-10101010)
  • Convert the obtained number from first two step to its binary equivalent then add "0011" if it earlier belonged to ascii value between 32 and 64 else add "0110" making it 12 bit for each character.
  • With the final binary equivalent we also 111111111111 as delimiter to find the end of message
  • Now from 12 bit representing each character every 2 bit is replaced with equivalent ZWCs according to the table. Each character is hidden after a word in the cover text.

Audio Steganography ( Hiding TEXT in AUDIO ) :

  • For encoding we have modified the LSB Algorithm, for that we take each frame byte of the converting it to 8 bit format then check for the 4th LSB and see if it matches with the secret message bit. If yes change the 2nd LSB to 0 using logical AND operator between each frame byte and 253(11111101). Else we change the 2nd LSB to 1 using logical AND operation with 253 and then logical OR to change it to 1 and now add secret message bit in LSB for achieving that use logical AND operation between each frame byte of carrier audio and a binary number of 254 (11111110). Then logical OR operation between modified carrier byte and the next bit (0 or 1) from the secret message which resets the LSB of carrier byte.

Video Steganography ( Hiding TEXT in Video ) :

  • In video steganography we have used combination of cryptography and Steganography. We encode the message through two parts
  • We convert plaintext to cipher text for doing so we have used RC4 Encryption Algorithm. RC4 is a stream cipher and variable-length key algorithm. This algorithm encrypts one byte at a time. It has two major parts for encryption and decryption:-
  • KSA(Key-Scheduling Algorithm)- A list S of length 256 is made and the entries of S are set equal to the values from 0 to 255 in ascending order. We ask user for a key and convert it to its equivalent ascii code. S[] is a permutation of 0,1,2....255, now a variable j is assigned as j=(j+S[i]+key[i%key_length) mod 256 and swap S(i) with S(j) and accordingly we get new permutation for the whole keystream according to the key.
  • PRGA(Pseudo random generation Algorithm (Stream Generation)) - Now we take input length of plaintext and initiate loop to generate a keystream byte of equal length. For this we initiate i=0, j=0 now increment i by 1 and mod with 256. Now we add S[i] to j amd mod of it with 256 ,again swap the values. At last step take store keystreambytes which matches as S[(S[i]+S[j]) mod 256] to finally get key stream of length same as plaintext.
  • Now we xor the plaintext with keystream to get the final cipher.

With Further Development In this Project " Steganography Tools", This Project Can be used by Indian army, RAW, Police and Intelligence agency for Special Emergency operation.

Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023