Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Overview

Project Name : Steganography-Tools

Made By - Priyansh Sharma

  • Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.
  • This project hides the message with in the image, text file, audio file and video file. In this project, the sender selects a cover file (image, text, audio or video) with secret text and hide it into the cover file by using different efficient algorithm and generate a stego file of same format as our cover file (image, text, audio or video). Then the stego file is sent to the destination with the help of private or public communication networks. On the other side i.e. receiver, the receiver downloads the stego file and by using the appropriate decoding algorithm retrieves the secret text that is hidden in the stego file.

1

Image Steganography ( Hiding TEXT in IMAGE ) :

  • Using Least Significant Bit Insertion we overwrite the LSB bit of actual image with the bit of text message character. At the end of text message we push a delimiter to the message string as a checkpoint useful in decoding function. We encode data in order of Red, then Green and then Blue pixel for the entire message.

Text Steganography ( Hiding TEXT in TEXT ) :

  • In Unicode, there are specific zero-width characters (ZWC). We used four ZWCs for hiding the Secret Message through the Cover Text.

image

  • We get its ascii value and it is incremented or decremented based on if ascii value between 32 and 64 , it is incremented by 48(ascii value for 0) else it is decremented by 48
  • Then xor the the obtained value with 170(binary equivalent-10101010)
  • Convert the obtained number from first two step to its binary equivalent then add "0011" if it earlier belonged to ascii value between 32 and 64 else add "0110" making it 12 bit for each character.
  • With the final binary equivalent we also 111111111111 as delimiter to find the end of message
  • Now from 12 bit representing each character every 2 bit is replaced with equivalent ZWCs according to the table. Each character is hidden after a word in the cover text.

Audio Steganography ( Hiding TEXT in AUDIO ) :

  • For encoding we have modified the LSB Algorithm, for that we take each frame byte of the converting it to 8 bit format then check for the 4th LSB and see if it matches with the secret message bit. If yes change the 2nd LSB to 0 using logical AND operator between each frame byte and 253(11111101). Else we change the 2nd LSB to 1 using logical AND operation with 253 and then logical OR to change it to 1 and now add secret message bit in LSB for achieving that use logical AND operation between each frame byte of carrier audio and a binary number of 254 (11111110). Then logical OR operation between modified carrier byte and the next bit (0 or 1) from the secret message which resets the LSB of carrier byte.

Video Steganography ( Hiding TEXT in Video ) :

  • In video steganography we have used combination of cryptography and Steganography. We encode the message through two parts
  • We convert plaintext to cipher text for doing so we have used RC4 Encryption Algorithm. RC4 is a stream cipher and variable-length key algorithm. This algorithm encrypts one byte at a time. It has two major parts for encryption and decryption:-
  • KSA(Key-Scheduling Algorithm)- A list S of length 256 is made and the entries of S are set equal to the values from 0 to 255 in ascending order. We ask user for a key and convert it to its equivalent ascii code. S[] is a permutation of 0,1,2....255, now a variable j is assigned as j=(j+S[i]+key[i%key_length) mod 256 and swap S(i) with S(j) and accordingly we get new permutation for the whole keystream according to the key.
  • PRGA(Pseudo random generation Algorithm (Stream Generation)) - Now we take input length of plaintext and initiate loop to generate a keystream byte of equal length. For this we initiate i=0, j=0 now increment i by 1 and mod with 256. Now we add S[i] to j amd mod of it with 256 ,again swap the values. At last step take store keystreambytes which matches as S[(S[i]+S[j]) mod 256] to finally get key stream of length same as plaintext.
  • Now we xor the plaintext with keystream to get the final cipher.

With Further Development In this Project " Steganography Tools", This Project Can be used by Indian army, RAW, Police and Intelligence agency for Special Emergency operation.

Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
Distributed deep learning on Hadoop and Spark clusters.

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version

Yahoo 1.3k Dec 28, 2022
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022