PLUR is a collection of source code datasets suitable for graph-based machine learning.

Overview

PLUR

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the datasets. This is done by offering a unified API and data structures for all datasets.

Installation

SRC_DIR=${PWD}/src
mkdir -p ${SRC_DIR} && cd ${SRC_DIR}
# For Cubert.
git clone https://github.com/google-research/google-research --depth=1
export PYTHONPATH=${PYTHONPATH}:${SRC_DIR}/google-research
git clone https://github.com/google-research/plur && cd plur
python -m pip install -r requirements.txt
python setup.py install

Test execution on small dataset

cd plur
python3 plur_data_generation.py --dataset_name=manysstubs4j_dataset \
  --stage_1_dir=/tmp/manysstubs4j_dataset/stage_1 \
  --stage_2_dir=/tmp/manysstubs4j_dataset/stage_2 \
  --train_data_percentage=40 \
  --validation_data_percentage=30 \
  --test_data_percentage=30

Usage

Basic usage

Data generation (step 1)

Data generation is done by calling plur.plur_data_generation.create_dataset(). The data generation runs in two stages:

  1. Convert raw data to plur.utils.GraphToOutputExample.
  2. Convert plur.utils.GraphToOutputExample to TFExample.

Stage 1 is unique for each dataset, but stage 2 is the same for almost all datasets.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
stage_2_kwargs = dict()
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

plur_data_generation.py also provides a command line interface, but it offers less flexibility.

python3 plur_data_generation.py --stage_1_dir=/tmp/code2seq_dataset/stage_1 --stage_2_dir=/tmp/code2seq_dataset/stage_2

Data loader (step 2)

After the data is generated, you can use PlurDataLoader to load the data. The data loader loads TFExamples but returns them as numpy arrays.

from plur.plur_data_loader import PlurDataLoader
from plur.util import constants

dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
split = constants.TRAIN_SPLIT_NAME
batch_size = 32
repeat_count = -1
drop_remainder = True
train_data_generator = PlurDataLoader(dataset_stage_2_directory, split, batch_size, repeat_count, drop_remainder)

for batch_data in train_data_generator:
  # your training loop...

Training (step 3)

This is the part where you use your own model to train on the PLUR data.

The models and the training code from the PLUR paper are not yet part of the current release. We plan to release it in the near future.

Evaluating (step 4)

Once the training is finished, you can generate the predictions on the test data and use plur_evaluator.py to evaluate the performance. plur_evaluator.py works in offline mode, meaning that it expects a file containing the ground truths, and a file containing the predictions.

python3 plur_evaluator.py --dataset_name=code2seq_dataset --target_file=/tmp/code2seq_dataset/targets.txt --prediction_file=/tmp/code2seq_dataset/predictions.txt

Transforming and filtering data

If there is something fundamental you want to change in the dataset, you should apply them in stage 1 of data generation, otherwise apply them in stage 2. The idea is that stage 1 should only be run once per dataset (to create the plur.utils.GraphToOutputExample), and stage 2 should be run each time you want to train on different data (to create the TFRecords).

All transformation and filtering functions are applied on plur.utils.GraphToOutputExample, see plur.utils.GraphToOutputExample for more information.

E.g. a transformation that can be run in stage 1 is that your model expects that graphs in the dataset have no loop, and you write your transformation function to remove loops. This will ensure that stage 2 will read data where the graph has no loops.

E.g. of filters that can be run in stage 2 is that you want to check your model performance on different graph sizes in terms of number of nodes. You write your own filter function to filter graphs with a large number of nodes.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
def _filter_graph_size(graph_to_output_example, graph_size=1024):
  return len(graph_to_output_example.get_nodes()) <= graph_size
stage_2_kwargs = dict(
    train_filter_funcs=(_filter_graph_size,),
    validation_filter_funcs=(_filter_graph_size,)
)
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

Advanced usage

plur.plur_data_generation.create_dataset() is just a thin wrapper around plur.stage_1.plur_dataset and plur.stage_2.graph_to_output_example_to_tfexample.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
stage_2_kwargs = dict()
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

is equivalent to

from plur.stage_1.code2seq_dataset import Code2seqDataset
from plur.stage_2.graph_to_output_example_to_tfexample import GraphToOutputExampleToTfexample

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
dataset = Code2seqDataset(dataset_stage_1_directory)
dataest.stage_1_mkdirs()
dataset.download_dataset()
dataset.run_pipeline()

dataset = GraphToOutputExampleToTfexample(dataset_stage_1_directory, dataset_stage_2_directory, dataset_name)
dataset.stage_2_mkdirs()
dataset.run_pipeline()

You can check out plur.stage_1.code2seq_dataset for arguments relevant for code2seq dataset. For example code2seq dataset provides java-small, java-med and java-large datasets. Therefore you can create a java-large dataset in this way.

from plur.stage_1.code2seq_dataset import Code2seqDataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'

dataset = Code2seqDataset(dataset_stage_1_directory, dataset_size='large')
dataest.stage_1_mkdirs()
dataset.download_dataset()
dataset.run_pipeline()

Adding a new dataset

All datasets should inherit plur.stage_1.plur_dataset.PlurDataset, and placed under plur/stage_1/, which requires you to implement:

  • download_dataset(): Code to download the dataset, we provide download_dataset_using_git() to download from git and download_dataset_using_requests() to download from a URL, which also works with a Google Drive URL. In download_dataset_using_git() we download the dataset from a specific commit id. In download_dataset_using_requests() we check the sha1sum for the downloaded files. This is to ensure that the same version of PLUR downloads the same raw data.
  • get_all_raw_data_paths(): It should return a list of paths, where each path is a file containing the raw data in the datasets.
  • raw_data_paths_to_raw_data_do_fn(): It should return a beam.DoFn class that overrides process(). The process() should tell beam how to open the files returned by get_all_raw_data_paths(). It is also here we define if the data belongs to any split (train/validation/test).
  • raw_data_to_graph_to_output_example(): This function transforms raw data from raw_data_paths_to_raw_data_do_fn() to GraphToOutputExample.

Then add/change the following lines in plur/plur_data_generation.py:

from plur.stage_1.foo_dataset import FooDataset

flags.DEFINE_enum('dataset_name', 'dummy_dataset',
                  ['code2seq_dataset', 'dummy_dataset',
                   'funcom_dataset', 'great_var_misuse_dataset',
                   'hoppity_single_ast_diff_dataset',
                   'manysstubs4j_dataset', 'foo_dataset'],
                  'Name of the dataset to generate data.')


def get_dataset_class(dataset_name):
  """Get the dataset class based on dataset_name."""
  if dataset_name == 'code2seq_dataset':
    return Code2SeqDataset
  elif dataset_name == 'dummy_dataset':
    return DummyDataset
  elif dataset_name == 'funcom_dataset':
    return FuncomDataset
  elif dataset_name == 'great_var_misuse_dataset':
    return GreatVarMisuseDataset
  elif dataset_name == 'hoppity_single_ast_diff_dataset':
    return HoppitySingleAstDiffDataset
  elif dataset_name == 'manysstubs4j_dataset':
    return ManySStuBs4JDataset
  elif dataset_name == 'foo_dataset':
    return FooDataset
  else:
    raise ValueError('{} is not supported.'.format(dataset_name))

Evaluation details

The details of how evaluation is performed are in plur/eval/README.md.

License

Licensed under the Apache 2.0 License.

Disclaimer

This is not an officially supported Google product.

Citation

Please cite the PLUR paper, Chen et al. https://proceedings.neurips.cc//paper/2021/hash/c2937f3a1b3a177d2408574da0245a19-Abstract.html

Owner
Google Research
Google Research
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Pragmatic AI Labs 421 Dec 31, 2022