PLUR is a collection of source code datasets suitable for graph-based machine learning.

Overview

PLUR

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the datasets. This is done by offering a unified API and data structures for all datasets.

Installation

SRC_DIR=${PWD}/src
mkdir -p ${SRC_DIR} && cd ${SRC_DIR}
# For Cubert.
git clone https://github.com/google-research/google-research --depth=1
export PYTHONPATH=${PYTHONPATH}:${SRC_DIR}/google-research
git clone https://github.com/google-research/plur && cd plur
python -m pip install -r requirements.txt
python setup.py install

Test execution on small dataset

cd plur
python3 plur_data_generation.py --dataset_name=manysstubs4j_dataset \
  --stage_1_dir=/tmp/manysstubs4j_dataset/stage_1 \
  --stage_2_dir=/tmp/manysstubs4j_dataset/stage_2 \
  --train_data_percentage=40 \
  --validation_data_percentage=30 \
  --test_data_percentage=30

Usage

Basic usage

Data generation (step 1)

Data generation is done by calling plur.plur_data_generation.create_dataset(). The data generation runs in two stages:

  1. Convert raw data to plur.utils.GraphToOutputExample.
  2. Convert plur.utils.GraphToOutputExample to TFExample.

Stage 1 is unique for each dataset, but stage 2 is the same for almost all datasets.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
stage_2_kwargs = dict()
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

plur_data_generation.py also provides a command line interface, but it offers less flexibility.

python3 plur_data_generation.py --stage_1_dir=/tmp/code2seq_dataset/stage_1 --stage_2_dir=/tmp/code2seq_dataset/stage_2

Data loader (step 2)

After the data is generated, you can use PlurDataLoader to load the data. The data loader loads TFExamples but returns them as numpy arrays.

from plur.plur_data_loader import PlurDataLoader
from plur.util import constants

dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
split = constants.TRAIN_SPLIT_NAME
batch_size = 32
repeat_count = -1
drop_remainder = True
train_data_generator = PlurDataLoader(dataset_stage_2_directory, split, batch_size, repeat_count, drop_remainder)

for batch_data in train_data_generator:
  # your training loop...

Training (step 3)

This is the part where you use your own model to train on the PLUR data.

The models and the training code from the PLUR paper are not yet part of the current release. We plan to release it in the near future.

Evaluating (step 4)

Once the training is finished, you can generate the predictions on the test data and use plur_evaluator.py to evaluate the performance. plur_evaluator.py works in offline mode, meaning that it expects a file containing the ground truths, and a file containing the predictions.

python3 plur_evaluator.py --dataset_name=code2seq_dataset --target_file=/tmp/code2seq_dataset/targets.txt --prediction_file=/tmp/code2seq_dataset/predictions.txt

Transforming and filtering data

If there is something fundamental you want to change in the dataset, you should apply them in stage 1 of data generation, otherwise apply them in stage 2. The idea is that stage 1 should only be run once per dataset (to create the plur.utils.GraphToOutputExample), and stage 2 should be run each time you want to train on different data (to create the TFRecords).

All transformation and filtering functions are applied on plur.utils.GraphToOutputExample, see plur.utils.GraphToOutputExample for more information.

E.g. a transformation that can be run in stage 1 is that your model expects that graphs in the dataset have no loop, and you write your transformation function to remove loops. This will ensure that stage 2 will read data where the graph has no loops.

E.g. of filters that can be run in stage 2 is that you want to check your model performance on different graph sizes in terms of number of nodes. You write your own filter function to filter graphs with a large number of nodes.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
def _filter_graph_size(graph_to_output_example, graph_size=1024):
  return len(graph_to_output_example.get_nodes()) <= graph_size
stage_2_kwargs = dict(
    train_filter_funcs=(_filter_graph_size,),
    validation_filter_funcs=(_filter_graph_size,)
)
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

Advanced usage

plur.plur_data_generation.create_dataset() is just a thin wrapper around plur.stage_1.plur_dataset and plur.stage_2.graph_to_output_example_to_tfexample.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
stage_2_kwargs = dict()
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

is equivalent to

from plur.stage_1.code2seq_dataset import Code2seqDataset
from plur.stage_2.graph_to_output_example_to_tfexample import GraphToOutputExampleToTfexample

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
dataset = Code2seqDataset(dataset_stage_1_directory)
dataest.stage_1_mkdirs()
dataset.download_dataset()
dataset.run_pipeline()

dataset = GraphToOutputExampleToTfexample(dataset_stage_1_directory, dataset_stage_2_directory, dataset_name)
dataset.stage_2_mkdirs()
dataset.run_pipeline()

You can check out plur.stage_1.code2seq_dataset for arguments relevant for code2seq dataset. For example code2seq dataset provides java-small, java-med and java-large datasets. Therefore you can create a java-large dataset in this way.

from plur.stage_1.code2seq_dataset import Code2seqDataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'

dataset = Code2seqDataset(dataset_stage_1_directory, dataset_size='large')
dataest.stage_1_mkdirs()
dataset.download_dataset()
dataset.run_pipeline()

Adding a new dataset

All datasets should inherit plur.stage_1.plur_dataset.PlurDataset, and placed under plur/stage_1/, which requires you to implement:

  • download_dataset(): Code to download the dataset, we provide download_dataset_using_git() to download from git and download_dataset_using_requests() to download from a URL, which also works with a Google Drive URL. In download_dataset_using_git() we download the dataset from a specific commit id. In download_dataset_using_requests() we check the sha1sum for the downloaded files. This is to ensure that the same version of PLUR downloads the same raw data.
  • get_all_raw_data_paths(): It should return a list of paths, where each path is a file containing the raw data in the datasets.
  • raw_data_paths_to_raw_data_do_fn(): It should return a beam.DoFn class that overrides process(). The process() should tell beam how to open the files returned by get_all_raw_data_paths(). It is also here we define if the data belongs to any split (train/validation/test).
  • raw_data_to_graph_to_output_example(): This function transforms raw data from raw_data_paths_to_raw_data_do_fn() to GraphToOutputExample.

Then add/change the following lines in plur/plur_data_generation.py:

from plur.stage_1.foo_dataset import FooDataset

flags.DEFINE_enum('dataset_name', 'dummy_dataset',
                  ['code2seq_dataset', 'dummy_dataset',
                   'funcom_dataset', 'great_var_misuse_dataset',
                   'hoppity_single_ast_diff_dataset',
                   'manysstubs4j_dataset', 'foo_dataset'],
                  'Name of the dataset to generate data.')


def get_dataset_class(dataset_name):
  """Get the dataset class based on dataset_name."""
  if dataset_name == 'code2seq_dataset':
    return Code2SeqDataset
  elif dataset_name == 'dummy_dataset':
    return DummyDataset
  elif dataset_name == 'funcom_dataset':
    return FuncomDataset
  elif dataset_name == 'great_var_misuse_dataset':
    return GreatVarMisuseDataset
  elif dataset_name == 'hoppity_single_ast_diff_dataset':
    return HoppitySingleAstDiffDataset
  elif dataset_name == 'manysstubs4j_dataset':
    return ManySStuBs4JDataset
  elif dataset_name == 'foo_dataset':
    return FooDataset
  else:
    raise ValueError('{} is not supported.'.format(dataset_name))

Evaluation details

The details of how evaluation is performed are in plur/eval/README.md.

License

Licensed under the Apache 2.0 License.

Disclaimer

This is not an officially supported Google product.

Citation

Please cite the PLUR paper, Chen et al. https://proceedings.neurips.cc//paper/2021/hash/c2937f3a1b3a177d2408574da0245a19-Abstract.html

Owner
Google Research
Google Research
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

Claudia dos Anjos 1 Jan 05, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021