Library of Stan Models for Survival Analysis

Overview

Build Status Coverage Status PyPI version

survivalstan: Survival Models in Stan

author: Jacki Novik

Overview

Library of Stan Models for Survival Analysis

Features:

  • Variety of standard survival models
    • Weibull, Exponential, and Gamma parameterizations
    • PEM models with variety of baseline hazards
    • PEM model with varying-coefficients (by group)
    • PEM model with time-varying-effects
  • Extensible framework - bring your own Stan code, or edit the models above
  • Uses pandas data frames & patsy formulas
  • Graphical posterior predictive checking (currently PEM models only)
  • Plot posterior estimates of key parameters using seaborn
  • Annotate posterior draws of parameter estimates, format as pandas dataframes
  • Works with extensions to pystan, such as stancache or pystan-cache

Support

Documentation is available online.

For help, please reach out to us on gitter.

Installation / Usage

Install using pip, as:

$ pip install survivalstan

Or, you can clone the repo:

$ git clone https://github.com/hammerlab/survivalstan.git
$ pip install .

Contributing

Please contribute to survivalstan development by letting us know if you encounter any bugs or have specific feature requests.

In addition, we welcome contributions of:

  • Stan code for survival models
  • Worked examples, as jupyter notebooks or markdown documents

Usage examples

There are several examples included in the example-notebooks, roughly one corresponding to each model.

If you are not sure where to start, Test pem_survival_model with simulated data.ipynb contains the most explanatory text. Many of the other notebooks are sparse on explanation, but do illustrate variations on the different models.

For basic usage:

import survivalstan
import stanity
import seaborn as sb
import matplotlib.pyplot as plt
import statsmodels

## load flchain test data from R's `survival` package
dataset = statsmodels.datasets.get_rdataset(package = 'survival', dataname = 'flchain' )
d  = dataset.data.query('futime > 7')
d.reset_index(level = 0, inplace = True)

## e.g. fit Weibull survival model
testfit_wei = survivalstan.fit_stan_survival_model(
	model_cohort = 'Weibull model',
	model_code = survivalstan.models.weibull_survival_model,
	df = d,
	time_col = 'futime',
	event_col = 'death',
	formula = 'age + sex',
	iter = 3000,
	chains = 4,
	make_inits = survivalstan.make_weibull_survival_model_inits
	)

## coefplot for Weibull coefficient estimates
sb.boxplot(x = 'value', y = 'variable', data = testfit_wei['coefs'])

## or, use plot_coefs
survivalstan.utils.plot_coefs([testfit_wei])

## print summary of MCMC draws from posterior for each parameter
print(testfit_wei['fit'])


## e.g. fit Piecewise-exponential survival model 
dlong = survivalstan.prep_data_long_surv(d, time_col = 'futime', event_col = 'death')
testfit_pem = survivalstan.fit_stan_survival_model(
	model_cohort = 'PEM model',
	model_code = survivalstan.models.pem_survival_model,
	df = dlong,
	sample_col = 'index',
	timepoint_end_col = 'end_time',
	event_col = 'end_failure',
	formula = 'age + sex',
	iter = 3000,
	chains = 4,
	)

## print summary of MCMC draws from posterior for each parameter
print(testfit_pem['fit'])

## coefplot for PEM model results
sb.boxplot(x = 'value', y = 'variable', data = testfit_pem['coefs'])

## plot baseline hazard (only PEM models)
survivalstan.utils.plot_coefs([testfit_pem], element='baseline')

## posterior-predictive checking (only PEM models)
survivalstan.utils.plot_pp_survival([testfit_pem])

## e.g. compare models using PSIS-LOO
stanity.loo_compare(testfit_wei['loo'], testfit_pem['loo'])

## compare coefplots 
sb.boxplot(x = 'value', y = 'variable', hue = 'model_cohort',
    data = testfit_pem['coefs'].append(testfit_wei['coefs']))
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

## (or, use survivalstan.utils.plot_coefs)
survivalstan.utils.plot_coefs([testfit_wei, testfit_pem])

Owner
Hammer Lab
We're a lab working to understand and improve the immune response to cancer
Hammer Lab
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Uber Open Source 1.6k Dec 31, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022