Library of Stan Models for Survival Analysis

Overview

Build Status Coverage Status PyPI version

survivalstan: Survival Models in Stan

author: Jacki Novik

Overview

Library of Stan Models for Survival Analysis

Features:

  • Variety of standard survival models
    • Weibull, Exponential, and Gamma parameterizations
    • PEM models with variety of baseline hazards
    • PEM model with varying-coefficients (by group)
    • PEM model with time-varying-effects
  • Extensible framework - bring your own Stan code, or edit the models above
  • Uses pandas data frames & patsy formulas
  • Graphical posterior predictive checking (currently PEM models only)
  • Plot posterior estimates of key parameters using seaborn
  • Annotate posterior draws of parameter estimates, format as pandas dataframes
  • Works with extensions to pystan, such as stancache or pystan-cache

Support

Documentation is available online.

For help, please reach out to us on gitter.

Installation / Usage

Install using pip, as:

$ pip install survivalstan

Or, you can clone the repo:

$ git clone https://github.com/hammerlab/survivalstan.git
$ pip install .

Contributing

Please contribute to survivalstan development by letting us know if you encounter any bugs or have specific feature requests.

In addition, we welcome contributions of:

  • Stan code for survival models
  • Worked examples, as jupyter notebooks or markdown documents

Usage examples

There are several examples included in the example-notebooks, roughly one corresponding to each model.

If you are not sure where to start, Test pem_survival_model with simulated data.ipynb contains the most explanatory text. Many of the other notebooks are sparse on explanation, but do illustrate variations on the different models.

For basic usage:

import survivalstan
import stanity
import seaborn as sb
import matplotlib.pyplot as plt
import statsmodels

## load flchain test data from R's `survival` package
dataset = statsmodels.datasets.get_rdataset(package = 'survival', dataname = 'flchain' )
d  = dataset.data.query('futime > 7')
d.reset_index(level = 0, inplace = True)

## e.g. fit Weibull survival model
testfit_wei = survivalstan.fit_stan_survival_model(
	model_cohort = 'Weibull model',
	model_code = survivalstan.models.weibull_survival_model,
	df = d,
	time_col = 'futime',
	event_col = 'death',
	formula = 'age + sex',
	iter = 3000,
	chains = 4,
	make_inits = survivalstan.make_weibull_survival_model_inits
	)

## coefplot for Weibull coefficient estimates
sb.boxplot(x = 'value', y = 'variable', data = testfit_wei['coefs'])

## or, use plot_coefs
survivalstan.utils.plot_coefs([testfit_wei])

## print summary of MCMC draws from posterior for each parameter
print(testfit_wei['fit'])


## e.g. fit Piecewise-exponential survival model 
dlong = survivalstan.prep_data_long_surv(d, time_col = 'futime', event_col = 'death')
testfit_pem = survivalstan.fit_stan_survival_model(
	model_cohort = 'PEM model',
	model_code = survivalstan.models.pem_survival_model,
	df = dlong,
	sample_col = 'index',
	timepoint_end_col = 'end_time',
	event_col = 'end_failure',
	formula = 'age + sex',
	iter = 3000,
	chains = 4,
	)

## print summary of MCMC draws from posterior for each parameter
print(testfit_pem['fit'])

## coefplot for PEM model results
sb.boxplot(x = 'value', y = 'variable', data = testfit_pem['coefs'])

## plot baseline hazard (only PEM models)
survivalstan.utils.plot_coefs([testfit_pem], element='baseline')

## posterior-predictive checking (only PEM models)
survivalstan.utils.plot_pp_survival([testfit_pem])

## e.g. compare models using PSIS-LOO
stanity.loo_compare(testfit_wei['loo'], testfit_pem['loo'])

## compare coefplots 
sb.boxplot(x = 'value', y = 'variable', hue = 'model_cohort',
    data = testfit_pem['coefs'].append(testfit_wei['coefs']))
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

## (or, use survivalstan.utils.plot_coefs)
survivalstan.utils.plot_coefs([testfit_wei, testfit_pem])

Owner
Hammer Lab
We're a lab working to understand and improve the immune response to cancer
Hammer Lab
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
SPCL 48 Dec 12, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023