虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

Overview

🎉 第二版本 🎉 (现货趋势网格)


介绍

在第一版本的基础上

趋势判断,不在固定点位开单,选择更优的开仓点位

优势: 🎉

  1. 简单易上手
  2. 安全(不用将api_secret告诉他人)

如何启动

  1. 修改app目录下的authorization文件
api_key='你的key'
api_secret='你的secret'

dingding_token = '申请钉钉群助手的token'   # 强烈建议您使用 (若不会申请,请加我个人微信)

如果你还没有币安账号: 注册页面交易返佣40%(系统返佣20%,id私发给我,微信每周返佣20%,长期有效)

免翻墙地址

申请api_key地址: 币安API管理页面

  1. 修改data/data.json配置文件 根据
{
    "runBet": {
        "next_buy_price": 350,      <- 下次开仓价   (你下一仓位买入价)
      
        "grid_sell_price": 375      <- 当前止盈价  (你的当前仓位卖出价)
        "step":0                    <- 当前仓位  (0:仓位为空)
    },
    "config": {
        "profit_ratio": 5,         <- 止盈比率      (卖出价调整比率。如:设置为5,当前买入价为100,那么下次卖出价为105)
        "double_throw_ratio": 5,   <- 补仓比率      (买入价调整比率。如:设置为5,当前买入价为100,那么下次买入价为95)
        "cointype": "ETHUSDT",     <- 交易对        (你要进行交易的交易对,请参考币安现货。如:BTC 填入 BTC/USDT)
        "quantity": [1,2,3]        <- 交易数量       (第一手买入1,第二手买入2...超过第三手以后的仓位均按照最后一位数量(3)买入)
        
    }
}

  1. 安装依赖包 ''' pip install requests json '''
  2. 运行主文件
# python eth-run.py 这是带有钉钉通知的主文件(推荐使用钉钉模式启动👍)

注意事项(一定要看)

  • 由于交易所的api在大陆无法访问(如果没有条件,可以使用api.binance.cc)
    • 您需要选择修改binanceAPI.py文件
# 修改为cc域名
class BinanceAPI(object):
    BASE_URL = "https://www.binance.cc/api/v1"
    FUTURE_URL = "https://fapi.binance.cc"
    BASE_URL_V3 = "https://api.binance.cc/api/v3"
    PUBLIC_URL = "https://www.binance.cc/exchange/public/product"
  • 如果您使用的交易所为币安,那么请保证账户里有足够的bnb

    • 手续费足够低
    • 确保购买的币种完整(如果没有bnb,比如购买1个eth,其中你只会得到0.999。其中0.001作为手续费支付了)
  • 第一版本现货账户保证有足够的U

  • 由于补仓比率是动态的,目前默认最小为5%。如果您认为过大,建议您修改文件夹data下的RunbetData.py文件

    def set_ratio(self,symbol):
        '''修改补仓止盈比率'''
        data_json = self._get_json_data()
        ratio_24hr = binan.get_ticker_24hour(symbol) #
        index = abs(ratio_24hr)

        if abs(ratio_24hr) >  **6** : # 今日24小时波动比率
            if ratio_24hr > 0 : # 单边上涨,补仓比率不变
                data_json['config']['profit_ratio'] =  **7** + self.get_step()/4  #
                data_json['config']['double_throw_ratio'] = **5**
            else: # 单边下跌
                data_json['config']['double_throw_ratio'] =  **7** + self.get_step()/4
                data_json['config']['profit_ratio'] =  **5**

        else: # 系数内震荡行情

            data_json['config']['double_throw_ratio'] = **5** + self.get_step() / 4
            data_json['config']['profit_ratio'] = **5** + self.get_step() / 4
        self._modify_json_data(data_json)

钉钉预警

如果您想使用钉钉通知,那么你需要创建一个钉钉群,然后加入自定义机器人。最后将机器人的token粘贴到authorization文件中的dingding_token 关键词输入:报警

钉钉通知交易截图

钉钉交易信息

25日实战收益

收益图

私人微信:欢迎志同道合的朋友一同探讨,一起进步。

交流群 wechat-QRcode 币圈快讯爬取群 wx号:findpanpan 麻烦备注来自github

钉钉设置教程

钉钉设置教程

免责申明

本项目不构成投资建议,投资者应独立决策并自行承担风险 币圈有风险,入圈须谨慎。

?? 风险提示:防范以“虚拟货币”“区块链”名义进行非法集资的风险。

Owner
幸福村的码农
努力中...
幸福村的码农
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

15 Sep 09, 2022
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023