虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

Overview

🎉 第二版本 🎉 (现货趋势网格)


介绍

在第一版本的基础上

趋势判断,不在固定点位开单,选择更优的开仓点位

优势: 🎉

  1. 简单易上手
  2. 安全(不用将api_secret告诉他人)

如何启动

  1. 修改app目录下的authorization文件
api_key='你的key'
api_secret='你的secret'

dingding_token = '申请钉钉群助手的token'   # 强烈建议您使用 (若不会申请,请加我个人微信)

如果你还没有币安账号: 注册页面交易返佣40%(系统返佣20%,id私发给我,微信每周返佣20%,长期有效)

免翻墙地址

申请api_key地址: 币安API管理页面

  1. 修改data/data.json配置文件 根据
{
    "runBet": {
        "next_buy_price": 350,      <- 下次开仓价   (你下一仓位买入价)
      
        "grid_sell_price": 375      <- 当前止盈价  (你的当前仓位卖出价)
        "step":0                    <- 当前仓位  (0:仓位为空)
    },
    "config": {
        "profit_ratio": 5,         <- 止盈比率      (卖出价调整比率。如:设置为5,当前买入价为100,那么下次卖出价为105)
        "double_throw_ratio": 5,   <- 补仓比率      (买入价调整比率。如:设置为5,当前买入价为100,那么下次买入价为95)
        "cointype": "ETHUSDT",     <- 交易对        (你要进行交易的交易对,请参考币安现货。如:BTC 填入 BTC/USDT)
        "quantity": [1,2,3]        <- 交易数量       (第一手买入1,第二手买入2...超过第三手以后的仓位均按照最后一位数量(3)买入)
        
    }
}

  1. 安装依赖包 ''' pip install requests json '''
  2. 运行主文件
# python eth-run.py 这是带有钉钉通知的主文件(推荐使用钉钉模式启动👍)

注意事项(一定要看)

  • 由于交易所的api在大陆无法访问(如果没有条件,可以使用api.binance.cc)
    • 您需要选择修改binanceAPI.py文件
# 修改为cc域名
class BinanceAPI(object):
    BASE_URL = "https://www.binance.cc/api/v1"
    FUTURE_URL = "https://fapi.binance.cc"
    BASE_URL_V3 = "https://api.binance.cc/api/v3"
    PUBLIC_URL = "https://www.binance.cc/exchange/public/product"
  • 如果您使用的交易所为币安,那么请保证账户里有足够的bnb

    • 手续费足够低
    • 确保购买的币种完整(如果没有bnb,比如购买1个eth,其中你只会得到0.999。其中0.001作为手续费支付了)
  • 第一版本现货账户保证有足够的U

  • 由于补仓比率是动态的,目前默认最小为5%。如果您认为过大,建议您修改文件夹data下的RunbetData.py文件

    def set_ratio(self,symbol):
        '''修改补仓止盈比率'''
        data_json = self._get_json_data()
        ratio_24hr = binan.get_ticker_24hour(symbol) #
        index = abs(ratio_24hr)

        if abs(ratio_24hr) >  **6** : # 今日24小时波动比率
            if ratio_24hr > 0 : # 单边上涨,补仓比率不变
                data_json['config']['profit_ratio'] =  **7** + self.get_step()/4  #
                data_json['config']['double_throw_ratio'] = **5**
            else: # 单边下跌
                data_json['config']['double_throw_ratio'] =  **7** + self.get_step()/4
                data_json['config']['profit_ratio'] =  **5**

        else: # 系数内震荡行情

            data_json['config']['double_throw_ratio'] = **5** + self.get_step() / 4
            data_json['config']['profit_ratio'] = **5** + self.get_step() / 4
        self._modify_json_data(data_json)

钉钉预警

如果您想使用钉钉通知,那么你需要创建一个钉钉群,然后加入自定义机器人。最后将机器人的token粘贴到authorization文件中的dingding_token 关键词输入:报警

钉钉通知交易截图

钉钉交易信息

25日实战收益

收益图

私人微信:欢迎志同道合的朋友一同探讨,一起进步。

交流群 wechat-QRcode 币圈快讯爬取群 wx号:findpanpan 麻烦备注来自github

钉钉设置教程

钉钉设置教程

免责申明

本项目不构成投资建议,投资者应独立决策并自行承担风险 币圈有风险,入圈须谨慎。

?? 风险提示:防范以“虚拟货币”“区块链”名义进行非法集资的风险。

Owner
幸福村的码农
努力中...
幸福村的码农
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
Time series changepoint detection

changepy Changepoint detection in time series in pure python Install pip install changepy Examples from changepy import pelt from cha

Rui Gil 92 Nov 08, 2022
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022