A Python implementation of GRAIL, a generic framework to learn compact time series representations.

Overview

GRAIL

A Python implementation of GRAIL, a generic framework to learn compact time series representations.

Requirements

  • Python 3.6+
  • numpy
  • scipy
  • tslearn

Installation

Installation using pip:

pip install grailts

To install from the source:

python setup.py install

Usage

Full Example

Here is an example where we load a UCR dataset and run approximate k-nearest neighbors on its GRAIL representations:

from GRAIL.TimeSeries import TimeSeries
from GRAIL.Representation import GRAIL
from GRAIL.kNN import kNN

TRAIN, train_labels = TimeSeries.load("ECG200_TRAIN", "UCR")
TEST, test_labels = TimeSeries.load("ECG200_TEST", "UCR")

representation = GRAIL(kernel="SINK", d = 100, gamma = 5)
repTRAIN, repTEST = representation.get_rep_train_test(TRAIN, TEST, exact=True)
neighbors, _, _ = kNN(repTRAIN, repTEST, method="ED", k=5, representation=None,
                              pq_method='opq')

print(neighbors)

Loading Datasets

To load UCR type datasets:

TRAIN, train_labels = TimeSeries.load("ECG200_TRAIN", "UCR")
TEST, test_labels = TimeSeries.load("ECG200_TEST", "UCR")

In this package, we assume that each row of the datasets is a time series.

Fetch GRAIL Representations

To fetch exact GRAIL representations of a training and a test dataset:

representation = GRAIL(kernel="SINK", d = 100, gamma = 5)
repTRAIN, repTEST = representation.get_rep_train_test(TRAIN, TEST, exact=True)

Here d specifies the number of landmark series, and gamma specifies the hyperparameter used for the SINK kernel. If gamma is not specified, it will be tuned by the algorithm.

If a single dataset is used instead:

repX = representation.get_representation(X)

Get Approximate k-Nearest-Neighbors

To get the approximate k-Nearest-Neighbors of TEST in TRAIN use:

neighbors, correlations, return_time = kNN(repTRAIN, repTEST, method="ED", k=5, representation=None,
                              pq_method='opq')

Note that Euclidean Distance in the GRAIL representation space estimates the SINK correlation in the original space.

Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022