Relevance Vector Machine implementation using the scikit-learn API.

Overview

scikit-rvm

https://travis-ci.org/JamesRitchie/scikit-rvm.svg?branch=master https://coveralls.io/repos/JamesRitchie/scikit-rvm/badge.svg?branch=master&service=github

scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API.

Quickstart

With NumPy, SciPy and scikit-learn available in your environment, install with:

pip install https://github.com/JamesRitchie/scikit-rvm/archive/master.zip

Regression is done with the RVR class:

>>> from skrvm import RVR
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5 ]
>>> clf = RVR(kernel='linear')
>>> clf.fit(X, y)
RVR(alpha=1e-06, beta=1e-06, beta_fixed=False, bias_used=True, coef0=0.0,
coef1=None, degree=3, kernel='linear', n_iter=3000,
threshold_alpha=1000000000.0, tol=0.001, verbose=False)
>>> clf.predict([[1, 1]])
array([ 1.49995187])

Classification is done with the RVC class:

>>> from skrvm import RVC
>>> from sklearn.datasets import load_iris
>>> clf = RVC()
>>> clf.fit(iris.data, iris.target)
RVC(alpha=1e-06, beta=1e-06, beta_fixed=False, bias_used=True, coef0=0.0,
coef1=None, degree=3, kernel='rbf', n_iter=3000, n_iter_posterior=50,
threshold_alpha=1000000000.0, tol=0.001, verbose=False)
>>> clf.score(iris.data, iris.target)
0.97999999999999998

Theory

The RVM is a sparse Bayesian analogue to the Support Vector Machine, with a number of advantages:

  • It provides probabilistic estimates, as opposed to the SVM's point estimates.
  • Typically provides a sparser solution than the SVM, which tends to have the number of support vectors grow linearly with the size of the training set.
  • Does not need a complexity parameter to be selected in order to avoid overfitting.

However it is more expensive to train than the SVM, although prediction is faster and no cross-validation runs are required.

The RVM's original creator Mike Tipping provides a selection of papers offering detailed insight into the formulation of the RVM (and sparse Bayesian learning in general) on a dedicated page, along with a Matlab implementation.

Most of this implementation was written working from Section 7.2 of Christopher M. Bishops's Pattern Recognition and Machine Learning.

Contributors

Future Improvements

  • Implement the fast Sequential Sparse Bayesian Learning Algorithm outlined in Section 7.2.3 of Pattern Recognition and Machine Learning
  • Handle ill-conditioning errors more gracefully.
  • Implement more kernel choices.
  • Create more detailed examples with IPython notebooks.
Owner
James Ritchie
Postgraduate research student in machine learning
James Ritchie
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023