Relevance Vector Machine implementation using the scikit-learn API.

Overview

scikit-rvm

https://travis-ci.org/JamesRitchie/scikit-rvm.svg?branch=master https://coveralls.io/repos/JamesRitchie/scikit-rvm/badge.svg?branch=master&service=github

scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API.

Quickstart

With NumPy, SciPy and scikit-learn available in your environment, install with:

pip install https://github.com/JamesRitchie/scikit-rvm/archive/master.zip

Regression is done with the RVR class:

>>> from skrvm import RVR
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5 ]
>>> clf = RVR(kernel='linear')
>>> clf.fit(X, y)
RVR(alpha=1e-06, beta=1e-06, beta_fixed=False, bias_used=True, coef0=0.0,
coef1=None, degree=3, kernel='linear', n_iter=3000,
threshold_alpha=1000000000.0, tol=0.001, verbose=False)
>>> clf.predict([[1, 1]])
array([ 1.49995187])

Classification is done with the RVC class:

>>> from skrvm import RVC
>>> from sklearn.datasets import load_iris
>>> clf = RVC()
>>> clf.fit(iris.data, iris.target)
RVC(alpha=1e-06, beta=1e-06, beta_fixed=False, bias_used=True, coef0=0.0,
coef1=None, degree=3, kernel='rbf', n_iter=3000, n_iter_posterior=50,
threshold_alpha=1000000000.0, tol=0.001, verbose=False)
>>> clf.score(iris.data, iris.target)
0.97999999999999998

Theory

The RVM is a sparse Bayesian analogue to the Support Vector Machine, with a number of advantages:

  • It provides probabilistic estimates, as opposed to the SVM's point estimates.
  • Typically provides a sparser solution than the SVM, which tends to have the number of support vectors grow linearly with the size of the training set.
  • Does not need a complexity parameter to be selected in order to avoid overfitting.

However it is more expensive to train than the SVM, although prediction is faster and no cross-validation runs are required.

The RVM's original creator Mike Tipping provides a selection of papers offering detailed insight into the formulation of the RVM (and sparse Bayesian learning in general) on a dedicated page, along with a Matlab implementation.

Most of this implementation was written working from Section 7.2 of Christopher M. Bishops's Pattern Recognition and Machine Learning.

Contributors

Future Improvements

  • Implement the fast Sequential Sparse Bayesian Learning Algorithm outlined in Section 7.2.3 of Pattern Recognition and Machine Learning
  • Handle ill-conditioning errors more gracefully.
  • Implement more kernel choices.
  • Create more detailed examples with IPython notebooks.
Owner
James Ritchie
Postgraduate research student in machine learning
James Ritchie
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023