Relevance Vector Machine implementation using the scikit-learn API.

Overview

scikit-rvm

https://travis-ci.org/JamesRitchie/scikit-rvm.svg?branch=master https://coveralls.io/repos/JamesRitchie/scikit-rvm/badge.svg?branch=master&service=github

scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API.

Quickstart

With NumPy, SciPy and scikit-learn available in your environment, install with:

pip install https://github.com/JamesRitchie/scikit-rvm/archive/master.zip

Regression is done with the RVR class:

>>> from skrvm import RVR
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5 ]
>>> clf = RVR(kernel='linear')
>>> clf.fit(X, y)
RVR(alpha=1e-06, beta=1e-06, beta_fixed=False, bias_used=True, coef0=0.0,
coef1=None, degree=3, kernel='linear', n_iter=3000,
threshold_alpha=1000000000.0, tol=0.001, verbose=False)
>>> clf.predict([[1, 1]])
array([ 1.49995187])

Classification is done with the RVC class:

>>> from skrvm import RVC
>>> from sklearn.datasets import load_iris
>>> clf = RVC()
>>> clf.fit(iris.data, iris.target)
RVC(alpha=1e-06, beta=1e-06, beta_fixed=False, bias_used=True, coef0=0.0,
coef1=None, degree=3, kernel='rbf', n_iter=3000, n_iter_posterior=50,
threshold_alpha=1000000000.0, tol=0.001, verbose=False)
>>> clf.score(iris.data, iris.target)
0.97999999999999998

Theory

The RVM is a sparse Bayesian analogue to the Support Vector Machine, with a number of advantages:

  • It provides probabilistic estimates, as opposed to the SVM's point estimates.
  • Typically provides a sparser solution than the SVM, which tends to have the number of support vectors grow linearly with the size of the training set.
  • Does not need a complexity parameter to be selected in order to avoid overfitting.

However it is more expensive to train than the SVM, although prediction is faster and no cross-validation runs are required.

The RVM's original creator Mike Tipping provides a selection of papers offering detailed insight into the formulation of the RVM (and sparse Bayesian learning in general) on a dedicated page, along with a Matlab implementation.

Most of this implementation was written working from Section 7.2 of Christopher M. Bishops's Pattern Recognition and Machine Learning.

Contributors

Future Improvements

  • Implement the fast Sequential Sparse Bayesian Learning Algorithm outlined in Section 7.2.3 of Pattern Recognition and Machine Learning
  • Handle ill-conditioning errors more gracefully.
  • Implement more kernel choices.
  • Create more detailed examples with IPython notebooks.
Owner
James Ritchie
Postgraduate research student in machine learning
James Ritchie
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022