A classification model capable of accurately predicting the price of secondhand cars

Overview

Title: Secondhand-Car-Price-Predictor

-- Project Status: [Completed ]

Project Intro/Objective

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this repository. Most packages used are usually pre-installed in most developed environments and tools like collab, jupyter, etc. This can be useful for people looking to enhance the way the code their predicitve models and efficient ways to deal with tabular data!

Methods Used

  • Inferential Statistics
  • Machine Learning
  • Feature Engineering
  • Predictive Modeling
  • Deep Learning
  • Data Visualization
  • Classification

Technologies

  • Python
  • Pandas, TensorFlow, SkLearn
  • Collab

Project Description

  • This Notebook is based off an open source dataset available on www.kaggle.com where I have created models to predict selling price of second hand cars on the basis of various parameters and attributes! The best score was 92.57% with the best MSE being around 4900
  • All models are subject to betterment with more stringent hyper-parameter tuning. This can be achieved by random selection, brute force methods, etc. Various other classifiers can also be used, but the most standard classifiers have been considered in this notebook.
  • Recommend standard practices for data transformation, outlier detection, and null value substitution have been incorporated in this notebook.
  • Good visualizations have also been shown in the notebook for explaining the importance and significance of certain parameters. It can be easily understood by people coming from non-technical backgrounds. Various parameter tuning and scaling methods are shown that helped me achieve enhanced results!
  • Recommend standard practices for data transformation, outlier detection, and null value substitution have been incorporated in this notebook.
  • This code has been UPVOTED by 10 People, Including Kaggle Grandmasters (Highly recognised people for their achievements in the data science Community). I have received a bronze medal for my code in the community.

Getting Started

One can simply download the notebook and dataset, open in platforms like Jupyter, Collab, and Run each cell to see results! This Python 3 environment comes with many helpful analytics libraries installed It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python For example, here's several helpful packages to load

import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the read-only "../input/" directory For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))

Contact

Owner
Akarsh Singh
Data Scientist, Grad Student, Avid Researcher in the domains of ML, Deep Learning, and Stats. In a nutshell, I enjoy transforming data into valuable knowledge!
Akarsh Singh
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022