Distributed Computing for AI Made Simple

Overview

build

drawing

Project Home   Blog   Documents   Paper   Media Coverage

Join Fiber users email list [email protected]

Fiber

Distributed Computing for AI Made Simple

This project is experimental and the APIs are not considered stable.

Fiber is a Python distributed computing library for modern computer clusters.

  • It is easy to use. Fiber allows you to write programs that run on a computer cluster level without the need to dive into the details of computer cluster.
  • It is easy to learn. Fiber provides the same API as Python's standard multiprocessing library that you are familiar with. If you know how to use multiprocessing, you can program a computer cluster with Fiber.
  • It is fast. Fiber's communication backbone is built on top of Nanomsg which is a high-performance asynchronous messaging library to allow fast and reliable communication.
  • It doesn't need deployment. You run it as the same way as running a normal application on a computer cluster and Fiber handles the rest for you.
  • It it reliable. Fiber has built-in error handling when you are running a pool of workers. Users can focus on writing the actual application code instead of dealing with crashed workers.

Originally, it was developed to power large scale parallel scientific computation projects like POET and it has been used to power similar projects within Uber.

Installation

pip install fiber

Check here for details.

Quick Start

Hello Fiber

To use Fiber, simply import it in your code and it works very similar to multiprocessing.

import fiber

if __name__ == '__main__':
    fiber.Process(target=print, args=('Hello, Fiber!',)).start()

Note that if __name__ == '__main__': is necessary because Fiber uses spawn method to start new processes. Check here for details.

Let's take look at another more complex example:

Estimating Pi

import fiber
import random

@fiber.meta(cpu=1)
def inside(p):
    x, y = random.random(), random.random()
    return x * x + y * y < 1

def main():
    NUM_SAMPLES = int(1e6)
    pool = fiber.Pool(processes=4)
    count = sum(pool.map(inside, range(0, NUM_SAMPLES)))
    print("Pi is roughly {}".format(4.0 * count / NUM_SAMPLES))

if __name__ == '__main__':
    main()

Fiber implements most of multiprocessing's API including Process, SimpleQueue, Pool, Pipe, Manager and it has its own extension to the multiprocessing's API to make it easy to compose large scale distributed applications. For the detailed API guild, check out here.

Running on a Kubernetes cluster

Fiber also has native support for computer clusters. To run the above example on Kubernetes, fiber provided a convenient command line tool to manage the workflow.

Assume you have a working docker environment locally and have finished configuring Google Cloud SDK. Both gcloud and kubectl are available locally. Then you can start by writing a Dockerfile which describes the running environment. An example Dockerfile looks like this:

# example.docker
FROM python:3.6-buster
ADD examples/pi_estimation.py /root/pi_estimation.py
RUN pip install fiber

Build an image and launch your job

fiber run -a python3 /root/pi_estimation.py

This command will look for local Dockerfile and build a docker image and push it to your Google Container Registry . It then launches the main job which contains your code and runs the command python3 /root/pi_estimation.py inside your job. Once the main job is running, it will start 4 subsequent jobs on the cluster and each of them is a Pool worker.

Supported platforms

  • Operating system: Linux
  • Python: 3.6+
  • Supported cluster management systems:
    • Kubernetes (Tested with Google Kubernetes Engine on Google cloud)

We are interested in supporting other cluster management systems like Slurm, if you want to contribute to it please let us know.

Check here for details.

Documentation

The documentation, including method/API references, can be found here.

Testing

Install test dependencies. You'll also need to make sure docker is available on the testing machine.

$ pip install -e .[test]

Run tests

$ make test

Contributing

Please read our code of conduct before you contribute! You can find details for submitting pull requests in the CONTRIBUTING.md file. Issue template.

Versioning

We document versions and changes in our changelog - see the CHANGELOG.md file for details.

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

Cite Fiber

@misc{zhi2020fiber,
    title={Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods},
    author={Jiale Zhi and Rui Wang and Jeff Clune and Kenneth O. Stanley},
    year={2020},
    eprint={2003.11164},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowledgments

  • Special thanks to Piero Molino for designing the logo for Fiber
Owner
Uber Open Source
Open Source Software at Uber
Uber Open Source
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022