Distributed Computing for AI Made Simple

Overview

build

drawing

Project Home   Blog   Documents   Paper   Media Coverage

Join Fiber users email list [email protected]

Fiber

Distributed Computing for AI Made Simple

This project is experimental and the APIs are not considered stable.

Fiber is a Python distributed computing library for modern computer clusters.

  • It is easy to use. Fiber allows you to write programs that run on a computer cluster level without the need to dive into the details of computer cluster.
  • It is easy to learn. Fiber provides the same API as Python's standard multiprocessing library that you are familiar with. If you know how to use multiprocessing, you can program a computer cluster with Fiber.
  • It is fast. Fiber's communication backbone is built on top of Nanomsg which is a high-performance asynchronous messaging library to allow fast and reliable communication.
  • It doesn't need deployment. You run it as the same way as running a normal application on a computer cluster and Fiber handles the rest for you.
  • It it reliable. Fiber has built-in error handling when you are running a pool of workers. Users can focus on writing the actual application code instead of dealing with crashed workers.

Originally, it was developed to power large scale parallel scientific computation projects like POET and it has been used to power similar projects within Uber.

Installation

pip install fiber

Check here for details.

Quick Start

Hello Fiber

To use Fiber, simply import it in your code and it works very similar to multiprocessing.

import fiber

if __name__ == '__main__':
    fiber.Process(target=print, args=('Hello, Fiber!',)).start()

Note that if __name__ == '__main__': is necessary because Fiber uses spawn method to start new processes. Check here for details.

Let's take look at another more complex example:

Estimating Pi

import fiber
import random

@fiber.meta(cpu=1)
def inside(p):
    x, y = random.random(), random.random()
    return x * x + y * y < 1

def main():
    NUM_SAMPLES = int(1e6)
    pool = fiber.Pool(processes=4)
    count = sum(pool.map(inside, range(0, NUM_SAMPLES)))
    print("Pi is roughly {}".format(4.0 * count / NUM_SAMPLES))

if __name__ == '__main__':
    main()

Fiber implements most of multiprocessing's API including Process, SimpleQueue, Pool, Pipe, Manager and it has its own extension to the multiprocessing's API to make it easy to compose large scale distributed applications. For the detailed API guild, check out here.

Running on a Kubernetes cluster

Fiber also has native support for computer clusters. To run the above example on Kubernetes, fiber provided a convenient command line tool to manage the workflow.

Assume you have a working docker environment locally and have finished configuring Google Cloud SDK. Both gcloud and kubectl are available locally. Then you can start by writing a Dockerfile which describes the running environment. An example Dockerfile looks like this:

# example.docker
FROM python:3.6-buster
ADD examples/pi_estimation.py /root/pi_estimation.py
RUN pip install fiber

Build an image and launch your job

fiber run -a python3 /root/pi_estimation.py

This command will look for local Dockerfile and build a docker image and push it to your Google Container Registry . It then launches the main job which contains your code and runs the command python3 /root/pi_estimation.py inside your job. Once the main job is running, it will start 4 subsequent jobs on the cluster and each of them is a Pool worker.

Supported platforms

  • Operating system: Linux
  • Python: 3.6+
  • Supported cluster management systems:
    • Kubernetes (Tested with Google Kubernetes Engine on Google cloud)

We are interested in supporting other cluster management systems like Slurm, if you want to contribute to it please let us know.

Check here for details.

Documentation

The documentation, including method/API references, can be found here.

Testing

Install test dependencies. You'll also need to make sure docker is available on the testing machine.

$ pip install -e .[test]

Run tests

$ make test

Contributing

Please read our code of conduct before you contribute! You can find details for submitting pull requests in the CONTRIBUTING.md file. Issue template.

Versioning

We document versions and changes in our changelog - see the CHANGELOG.md file for details.

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

Cite Fiber

@misc{zhi2020fiber,
    title={Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods},
    author={Jiale Zhi and Rui Wang and Jeff Clune and Kenneth O. Stanley},
    year={2020},
    eprint={2003.11164},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowledgments

  • Special thanks to Piero Molino for designing the logo for Fiber
Owner
Uber Open Source
Open Source Software at Uber
Uber Open Source
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
Machine Learning Techniques using python.

šŸ‘‹ Hi, I’m Fahad from TEXAS TECH. šŸ‘€ I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023