Machine Learning Algorithms

Overview

Machine-Learning-Algorithms

In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the person's favorite shopping type based on the information provided. In this context, 13 questions were asked to the user. As a result of these questions, the estimation of the shopping type, which is a classification problem, will be carried out with 5 different algorithms.

These algorithms;

  • Logistic Regression
  • Random Forest Classifier
  • Support Vector Machine
  • K Neighbors
  • Decision Tree

algorithms will have a total of 12 parameters

A total of 219 people participated in the survey and the answers given to this form were used in the training of the algorithm.

Target variables to be estimated;

  • Clothing
  • Technology
  • Home/Life
  • Book/Magazine

The questions asked to make the estimation are as follows:

  • Gender
  • Age
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • What is your favorite season?
  • What is the importance of the dollar exchange rate for your shopping?
  • What is your satisfaction level with your budget for shopping?
  • How would you rate your social life?
  • Which of the online shopping sites do you prefer?
  • How often do you go shopping?
  • What is your average sleep time per day?
  • What is your favorite type of shopping? // target

The dataset, which is in the form of a csv file, is read to the system as a dataframe. And the column of information in which hour and minute the user filled out the form, which does not make sense for our algorithm, is removed.

Since the numbers in some columns is way more different than the others before the PCA operation is performed, the standardization process is applied to the columns so that they do not have a greater effect than the combination of these columns during the PCA operation.

The features and target columns to be used during the export of the dataset to the algorithms are determined.

In order to fit the resulting algorithms, the initial state of the dataset, its normalized state and the pca applied states are kept separately. The generated data is divided into parts as train = 0.8 and test = 0.2. Cross Validation process will be applied on 0.8 train data.

Before giving the dataset to the 5 algorithms, the answers written in the text in the dataset and the text in the other questions are encoded and the dataset is converted into numbers.

The 5 algorithms are functions from the sklearn library. The Cross Validation process was performed using the GridSearchCV() function, excluding the Logistic Regression algorithm. In the Logistic regression algorithm, since it is possible to do Cross Validation with the logistic regression function it is not necessary to use GridSearchCV().

GridSearchCV() applies K-Fold Cross Validation by trying the parameters I gave for the function, the number of K for my project is 10. By dividing the cross validation process parameters and the train data we provide, it is determined at which values we can get the best result.

An algorithm is created using the determined parameters and the algorithm is tested with the test data to be fitted with the train data.

Detailed information about dataset can be found in the report.

Owner
Göktuğ Ayar
Computer Engineering student at Yildiz Technical University
Göktuğ Ayar
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021