Machine Learning Algorithms

Overview

Machine-Learning-Algorithms

In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the person's favorite shopping type based on the information provided. In this context, 13 questions were asked to the user. As a result of these questions, the estimation of the shopping type, which is a classification problem, will be carried out with 5 different algorithms.

These algorithms;

  • Logistic Regression
  • Random Forest Classifier
  • Support Vector Machine
  • K Neighbors
  • Decision Tree

algorithms will have a total of 12 parameters

A total of 219 people participated in the survey and the answers given to this form were used in the training of the algorithm.

Target variables to be estimated;

  • Clothing
  • Technology
  • Home/Life
  • Book/Magazine

The questions asked to make the estimation are as follows:

  • Gender
  • Age
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • What is your favorite season?
  • What is the importance of the dollar exchange rate for your shopping?
  • What is your satisfaction level with your budget for shopping?
  • How would you rate your social life?
  • Which of the online shopping sites do you prefer?
  • How often do you go shopping?
  • What is your average sleep time per day?
  • What is your favorite type of shopping? // target

The dataset, which is in the form of a csv file, is read to the system as a dataframe. And the column of information in which hour and minute the user filled out the form, which does not make sense for our algorithm, is removed.

Since the numbers in some columns is way more different than the others before the PCA operation is performed, the standardization process is applied to the columns so that they do not have a greater effect than the combination of these columns during the PCA operation.

The features and target columns to be used during the export of the dataset to the algorithms are determined.

In order to fit the resulting algorithms, the initial state of the dataset, its normalized state and the pca applied states are kept separately. The generated data is divided into parts as train = 0.8 and test = 0.2. Cross Validation process will be applied on 0.8 train data.

Before giving the dataset to the 5 algorithms, the answers written in the text in the dataset and the text in the other questions are encoded and the dataset is converted into numbers.

The 5 algorithms are functions from the sklearn library. The Cross Validation process was performed using the GridSearchCV() function, excluding the Logistic Regression algorithm. In the Logistic regression algorithm, since it is possible to do Cross Validation with the logistic regression function it is not necessary to use GridSearchCV().

GridSearchCV() applies K-Fold Cross Validation by trying the parameters I gave for the function, the number of K for my project is 10. By dividing the cross validation process parameters and the train data we provide, it is determined at which values we can get the best result.

An algorithm is created using the determined parameters and the algorithm is tested with the test data to be fitted with the train data.

Detailed information about dataset can be found in the report.

Owner
Göktuğ Ayar
Computer Engineering student at Yildiz Technical University
Göktuğ Ayar
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Machine-care - A simple python script to take care of simple maintenance tasks

Machine care An simple python script to take care of simple maintenance tasks fo

2 Jul 10, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022