A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Overview

Stox

A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict the price. It uses a technical indicator algorithm developed by the Stox team for technical analysis. Check out how it works here.

Installation

Get it from PyPi:

pip3 install stox

Clone it from github:

git clone https://github.com/dopevog/stox.git
cd stox
python3 setup.py

Usage

Arguments:

    stock (str): stock ticker symbol
    output (str): 'list' or 'message' (Format Of Output)
    years (int or float): years of data to be considered
    chart (bool): generate performance plot

Returns:

List:

[company name, current price, predicted price, technical analysis, date (For)]

Message:

company name
current price
predicted price
technical analysis
data (for)

Examples:

Basic

import stox

script = input("Stock Ticker Symbol: ")
data = stox.stox.exec(script,'list')

print(data)
$ stox> python3 main.py
$ Stock Ticker Symbol: AAPL
$ ['Apple Inc.', 125.43000030517578, 124.91, 'Bearish (Already)', '2021-05-24']

Intermediate

= data[1] * 0.02: if data[3] == "Bullish (Starting)": df['Signal'] = "Buy" elif data[3] == "Bullish (Already)": df['Signal'] = "Up" elif data[2] - data[1] <= data[1] * -0.02: if data[3] == "Bearish (Starting)": df['Signal'] = "Sell" elif data[3] == "Bearish (Already)": df['Signal'] = "Down" else: df['Signal'] = "None" x = x+1 df.to_csv("output.csv") print("Done") ">
import stox
import pandas as pd

stock_list = pd.read_csv("SPX500.csv") 
df = stock_list 
number_of_stocks = 505 
x = 0
while x < number_of_stocks:
    ticker = stock_list.iloc[x]["Symbols"]
    data = stox.stox.exec(ticker,'list')
    df['Price'] = data[1] 
    df['Prediction'] = data[2]
    df['Analysis'] = data[3]
    df['DateFor'] = data[4]
    if data[2] - data[1]  >= data[1]  * 0.02:
        if data[3] == "Bullish (Starting)":
            df['Signal'] = "Buy"
        elif data[3] == "Bullish (Already)":
            df['Signal'] = "Up"
    elif data[2] - data[1]  <= data[1]  * -0.02:
        if data[3] == "Bearish (Starting)":
            df['Signal'] = "Sell"
        elif data[3] == "Bearish (Already)":
            df['Signal'] = "Down"
    else:
        df['Signal'] = "None"
    x = x+1
df.to_csv("output.csv") 
print("Done") 
$ stox> python3 main.py
$ Done

More Examples Including These Ones Can Be Found Here

Possible Implentations

  • Algorithmic Trading
  • Single Stock Analysis
  • Multistock Analysis
  • And Much More!

Credits

License

This Project Has Been MIT Licensed

You might also like...
 Warren - Stock Price Predictor
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

A machine learning project that predicts the price of used cars in the UK
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

 pure-predict: Machine learning prediction in pure Python
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks like scikit-learn and fasttext. It implements the predict methods of these frameworks in pure Python.

Comments
  • new

    new

    My name is Luis, I'm a big-data machine-learning developer, I'm a fan of your work, and I usually check your updates.

    I was afraid that my savings would be eaten by inflation. I have created a powerful tool that based on past technical patterns (volatility, moving averages, statistics, trends, candlesticks, support and resistance, stock index indicators). All the ones you know (RSI, MACD, STOCH, Bolinger Bands, SMA, DEMARK, Japanese candlesticks, ichimoku, fibonacci, williansR, balance of power, murrey math, etc) and more than 200 others.

    The tool creates prediction models of correct trading points (buy signal and sell signal, every stock is good traded in time and direction). For this I have used big data tools like pandas python, stock market libraries like: tablib, TAcharts ,pandas_ta... For data collection and calculation. And powerful machine-learning libraries such as: Sklearn.RandomForest , Sklearn.GradientBoosting, XGBoost, Google TensorFlow and Google TensorFlow LSTM.

    With the models trained with the selection of the best technical indicators, the tool is able to predict trading points (where to buy, where to sell) and send real-time alerts to Telegram or Mail. The points are calculated based on the learning of the correct trading points of the last 2 years (including the change to bear market after the rate hike).

    I think it could be useful to you, to improve, I would like to share it with you, and if you are interested in improving and collaborating I am also willing, and if not file it in the box.

    opened by Leci37 0
Releases(0.5)
Owner
Stox
Making Apps & Modules For The Stockmarket & To Make Life Easier!
Stox
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022