jaxfg - Factor graph-based nonlinear optimization library for JAX.

Overview

jaxfg

Factor graph-based nonlinear optimization library for JAX.

Applications include sensor fusion, control, planning, SLAM. Borrows heavily from a wide set of existing libraries, including: Ceres Solver, g2o, GTSAM, minisam, SwiftFusion.

Features:

  • Autodiff-powered (sparse) Jacobians.
  • Automatic batching of factor computations.
  • Out-of-the-box support for optimization on SO(2), SO(3), SE(2), and SE(3).
  • 100% implemented in Python!

Current limitations:

  • JIT compilation adds significant startup overhead. This could likely be optimized (for example, by specifying more analytical Jacobians) but is mostly unavoidable with JAX/XLA. Limits applications for systems that are online or require dynamic graph alterations.
  • Python >=3.7 only, due to features needed for generic types.

Installation

scikit-sparse require SuiteSparse:

sudo apt update
sudo apt install -y libsuitesparse-dev

Then, from your environment of choice:

git clone https://github.com/brentyi/jaxfg.git
cd jaxfg
pip install -e .

Example scripts

Toy pose graph optimization:

python scripts/pose_graph_simple.py

Pose graph optimization from .g2o files:

python scripts/pose_graph_g2o.py --help

To-do

  • Preliminary graph, variable, factor interfaces
  • Real vector variable types
  • Refactor into package
  • Nonlinear optimization for MAP inference
    • Conjugate gradient linear solver
    • CHOLMOD linear solver
      • Basic implementation. JIT-able, but no vmap, pmap, or autodiff support.
    • Gauss-Newton implementation
    • Termination criteria
    • Damped least squares
    • Dogleg
    • Inexact Newton steps
    • Revisit termination criteria
    • Reduce redundant code
    • Robust losses
  • Marginalization
    • Working prototype using sksparse/CHOLMOD
    • JAX implementation?
  • Validate g2o example
  • Performance
    • More intentional JIT compilation
    • Re-implement parallel factor computation
    • Vectorized linearization
    • Basic (Jacobi) CGLS preconditioning
  • Manifold optimization (mostly offloaded to jaxlie)
    • Basic interface
    • Manifold optimization on SO2
    • Manifold optimization on SE2
    • Manifold optimization on SO3
    • Manifold optimization on SE3
  • Usability + code health (low priority)
    • Basic cleanup/refactor
      • Better parallel factor interface
      • Separate out utils, lie group helpers
      • Put things in folders
    • Resolve typing errors
    • Cleanup/refactor (more)
    • Package cleanup: dependencies, etc
    • Add CI:
      • mypy
      • lint
      • build
      • coverage
    • More comprehensive tests
    • Clean up docstrings
Owner
Brent Yi
Brent Yi
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Distributed deep learning on Hadoop and Spark clusters.

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version

Yahoo 1.3k Dec 28, 2022
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022