jaxfg - Factor graph-based nonlinear optimization library for JAX.

Overview

jaxfg

Factor graph-based nonlinear optimization library for JAX.

Applications include sensor fusion, control, planning, SLAM. Borrows heavily from a wide set of existing libraries, including: Ceres Solver, g2o, GTSAM, minisam, SwiftFusion.

Features:

  • Autodiff-powered (sparse) Jacobians.
  • Automatic batching of factor computations.
  • Out-of-the-box support for optimization on SO(2), SO(3), SE(2), and SE(3).
  • 100% implemented in Python!

Current limitations:

  • JIT compilation adds significant startup overhead. This could likely be optimized (for example, by specifying more analytical Jacobians) but is mostly unavoidable with JAX/XLA. Limits applications for systems that are online or require dynamic graph alterations.
  • Python >=3.7 only, due to features needed for generic types.

Installation

scikit-sparse require SuiteSparse:

sudo apt update
sudo apt install -y libsuitesparse-dev

Then, from your environment of choice:

git clone https://github.com/brentyi/jaxfg.git
cd jaxfg
pip install -e .

Example scripts

Toy pose graph optimization:

python scripts/pose_graph_simple.py

Pose graph optimization from .g2o files:

python scripts/pose_graph_g2o.py --help

To-do

  • Preliminary graph, variable, factor interfaces
  • Real vector variable types
  • Refactor into package
  • Nonlinear optimization for MAP inference
    • Conjugate gradient linear solver
    • CHOLMOD linear solver
      • Basic implementation. JIT-able, but no vmap, pmap, or autodiff support.
    • Gauss-Newton implementation
    • Termination criteria
    • Damped least squares
    • Dogleg
    • Inexact Newton steps
    • Revisit termination criteria
    • Reduce redundant code
    • Robust losses
  • Marginalization
    • Working prototype using sksparse/CHOLMOD
    • JAX implementation?
  • Validate g2o example
  • Performance
    • More intentional JIT compilation
    • Re-implement parallel factor computation
    • Vectorized linearization
    • Basic (Jacobi) CGLS preconditioning
  • Manifold optimization (mostly offloaded to jaxlie)
    • Basic interface
    • Manifold optimization on SO2
    • Manifold optimization on SE2
    • Manifold optimization on SO3
    • Manifold optimization on SE3
  • Usability + code health (low priority)
    • Basic cleanup/refactor
      • Better parallel factor interface
      • Separate out utils, lie group helpers
      • Put things in folders
    • Resolve typing errors
    • Cleanup/refactor (more)
    • Package cleanup: dependencies, etc
    • Add CI:
      • mypy
      • lint
      • build
      • coverage
    • More comprehensive tests
    • Clean up docstrings
Owner
Brent Yi
Brent Yi
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023