Distributed scikit-learn meta-estimators in PySpark

Overview
sk-dist

sk-dist: Distributed scikit-learn meta-estimators in PySpark

License Build Status PyPI Package Downloads Python Versions

What is it?

sk-dist is a Python package for machine learning built on top of scikit-learn and is distributed under the Apache 2.0 software license. The sk-dist module can be thought of as "distributed scikit-learn" as its core functionality is to extend the scikit-learn built-in joblib parallelization of meta-estimator training to spark. A popular use case is the parallelization of grid search as shown here:

sk-dist

Check out the blog post for more information on the motivation and use cases of sk-dist.

Main Features

  • Distributed Training - sk-dist parallelizes the training of scikit-learn meta-estimators with PySpark. This allows distributed training of these estimators without any constraint on the physical resources of any one machine. In all cases, spark artifacts are automatically stripped from the fitted estimator. These estimators can then be pickled and un-pickled for prediction tasks, operating identically at predict time to their scikit-learn counterparts. Supported tasks are:
  • Distributed Prediction - sk-dist provides a prediction module which builds vectorized UDFs for PySpark DataFrames using fitted scikit-learn estimators. This distributes the predict and predict_proba methods of scikit-learn estimators, enabling large scale prediction with scikit-learn.
  • Feature Encoding - sk-dist provides a flexible feature encoding utility called Encoderizer which encodes mix-typed feature spaces using either default behavior or user defined customizable settings. It is particularly aimed at text features, but it additionally handles numeric and dictionary type feature spaces.

Installation

Dependencies

sk-dist requires:

Dependency Notes

  • versions of numpy, scipy and joblib that are compatible with any supported version of scikit-learn should be sufficient for sk-dist
  • sk-dist is not supported with Python 2

Spark Dependencies

Most sk-dist functionality requires a spark installation as well as PySpark. Some functionality can run without spark, so spark related dependencies are not required. The connection between sk-dist and spark relies solely on a sparkContext as an argument to various sk-dist classes upon instantiation.

A variety of spark configurations and setups will work. It is left up to the user to configure their own spark setup. The testing suite runs spark 2.4 and spark 3.0, though any spark 2.0+ versions are expected to work.

Additional spark related dependecies are pyarrow, which is used only for skdist.predict functions. This uses vectorized pandas UDFs which require pyarrow>=0.8.0, tested with pyarrow==0.16.0. Depending on the spark version, it may be necessary to set spark.conf.set("spark.sql.execution.arrow.enabled", "true") in the spark configuration.

User Installation

The easiest way to install sk-dist is with pip:

pip install --upgrade sk-dist

You can also download the source code:

git clone https://github.com/Ibotta/sk-dist.git

Testing

With pytest installed, you can run tests locally:

pytest sk-dist

Examples

The package contains numerous examples on how to use sk-dist in practice. Examples of note are:

Gradient Boosting

sk-dist has been tested with a number of popular gradient boosting packages that conform to the scikit-learn API. This includes xgboost and catboost. These will need to be installed in addition to sk-dist on all nodes of the spark cluster via a node bootstrap script. Version compatibility is left up to the user.

Support for lightgbm is not guaranteed, as it requires additional installations on all nodes of the spark cluster. This may work given proper installation but has not beed tested with sk-dist.

Background

The project was started at Ibotta Inc. on the machine learning team and open sourced in 2019.

It is currently maintained by the machine learning team at Ibotta. Special thanks to those who contributed to sk-dist while it was initially in development at Ibotta:

Thanks to James Foley for logo artwork.

IbottaML
Owner
Ibotta
Ibotta
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors

By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated

Santosh 640 Dec 31, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021