Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Overview

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai)

Programming assignments from all courses in the Coursera Machine Learning Engineering for Production (MLOps) Specialization offered by deeplearning.ai.

Courses

The GAN Specialization on Coursera contains three courses:

  1. Course 1: Introduction to Machine Learning in Production

  2. Course 2: Machine Learning Data Lifecycle in Production

  3. Course 3: Machine Learning Modeling Pipelines in Production

  4. Course 4: Deploying Machine Learning Models in Production

Why this Specialization?

  • Become a Machine Learning expert. Productionize your machine learning knowledge and expand your production engineering capabilities.

  • Skills: Managing Machine Learning Production Systems, Deployment Pipelines, Model Pipelines, Data Pipelines, Machine Learning Engineering for Production, Human-level Performance (HLP), Concept Drift, Model Baseline, Project Scoping and Design, ML Deployment Challenges, ML Metadata, Convolutional Neural Network

  • Level: Advanced

    • Some knowledge of AI / deep learning
    • Intermediate skills in Python
    • Experience with any deep learning framework (PyTorch, Keras, or TensorFlow)

About this Specialization

  • Understanding machine learning and deep learning concepts is essential, but if you’re looking to build an effective AI career, you need production engineering capabilities as well.

  • Effectively deploying machine learning models requires competencies more commonly found in technical fields such as software engineering and DevOps. Machine learning engineering for production combines the foundational concepts of machine learning with the functional expertise of modern software development and engineering roles.

  • The Machine Learning Engineering for Production (MLOps) Specialization covers how to conceptualize, build, and maintain integrated systems that continuously operate in production. In striking contrast with standard machine learning modeling, production systems need to handle relentless evolving data. Moreover, the production system must run non-stop at the minimum cost while producing the maximum performance. In this Specialization, you will learn how to use well-established tools and methodologies for doing all of this effectively and efficiently.

  • In this Specialization, you will become familiar with the capabilities, challenges, and consequences of machine learning engineering in production. By the end, you will be ready to employ your new production-ready skills to participate in the development of leading-edge AI technology to solve real-world problems.

Applied Learning Project

By the end, you'll be ready to:

  • Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements
  • Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application
  • Build data pipelines by gathering, cleaning, and validating datasets
  • Implement feature engineering, transformation, and selection with TensorFlow Extended
  • Establish data lifecycle by leveraging data lineage and provenance metadata tools and follow data evolution with enterprise data schemas
  • Apply techniques to manage modeling resources and best serve offline/online inference requests
  • Use analytics to address model fairness, explainability issues, and mitigate bottlenecks
  • Deliver deployment pipelines for model serving that require different infrastructures
  • Apply best practices and progressive delivery techniques to maintain a continuously operating production system

Programming Assignments

Course 1: Introduction to Machine Learning in Production

Week 1

Week 2

Week 3


Course 2: Machine Learning Data Lifecycle in Production

Week 1

Week 2

Week 3

Week 4


Disclaimer

I recognize the hard time people spend on building intuition, understanding new concepts and debugging assignments. The solutions uploaded here are only for reference. They are meant to unblock you if you get stuck somewhere. Please do not copy any part of the code as-is (the programming assignments are fairly easy if you read the instructions carefully). Similarly, try out the quizzes yourself before you refer to the quiz solutions.

Owner
Aman Chadha
Tinkerer @ . AI @ Stanford.
Aman Chadha
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023