A repository to index and organize the latest machine learning courses found on YouTube.

Overview

πŸ“Ί ML YouTube Courses

At DAIR.AI we ❀️ open education. We are excited to share some of the best and most recent machine learning courses available on YouTube.

Course List:


Stanford CS229: Machine Learning

To learn some of the basics of ML:

  • Linear Regression and Gradient Descent
  • Logistic Regression
  • Naive Bayes
  • SVMs
  • Kernels
  • Decision Trees
  • Introduction to Neural Networks
  • Debugging ML Models ...

πŸ”— Link to Course

Applied Machine Learning

To learn some of the most widely used techniques in ML:

  • Optimization and Calculus
  • Overfitting and Underfitting
  • Regularization
  • Monte Carlo Estimation
  • Maximum Likelihood Learning
  • Nearest Neighbours ...

πŸ”— Link to Course

Machine Learning with Graphs (Stanford)

To learn some of the latest graph techniques in machine learning:

  • PageRank
  • Matrix Factorizing
  • Node Embeddings
  • Graph Neural Networks
  • Knowledge Graphs
  • Deep Generative Models for Graphs ...

πŸ”— Link to Course

Probabilistic Machine Learning

To learn the probabilistic paradigm of ML:

  • Reasoning about uncertainty
  • Continuous Variables
  • Sampling
  • Markov Chain Monte Carlo
  • Gaussian Distributions
  • Graphical Models
  • Tuning Inference Algorithms ...

πŸ”— Link to Course

Introduction to Deep Learning

To learn some of the fundamentals of deep learning:

  • Introduction to Deep Learning

πŸ”— Link to Course

Deep Learning: CS 182

To learn some of the widely used techniques in deep learning:

  • Machine Learning Basics
  • Error Analysis
  • Optimization
  • Backpropagation
  • Initialization
  • Batch Normalization
  • Style transfer
  • Imitation Learning ...

πŸ”— Link to Course

Deep Unsupervised Learning

To learn the latest and most widely used techniques in deep unsupervised learning:

  • Autoregressive Models
  • Flow Models
  • Latent Variable Models
  • Self-supervised learning
  • Implicit Models
  • Compression ...

πŸ”— Link to Course

NYU Deep Learning SP21

To learn some of the advanced techniques in deep learning:

  • Neural Nets: rotation and squashing
  • Latent Variable Energy Based Models
  • Unsupervised Learning
  • Generative Adversarial Networks
  • Autoencoders ...

πŸ”— Link to Course

CS224N: Natural Language Processing with Deep Learning

To learn the latest approaches for deep leanring based NLP:

  • Dependency parsing
  • Language models and RNNs
  • Question Answering
  • Transformers and pretraining
  • Natural Language Generation
  • T5 and Large Language Models
  • Future of NLP ...

πŸ”— Link to Course

CMU Neural Networks for NLP

To learn the latest neural network based techniques for NLP:

  • Language Modeling
  • Efficiency tricks
  • Conditioned Generation
  • Structured Prediction
  • Model Interpretation
  • Advanced Search Algorithms ...

πŸ”— Link to Course

CMU Advanced NLP

To learn:

  • Basics of modern NLP techniques
  • Multi-task, Multi-domain, multi-lingual learning
  • Prompting + Sequence-to-sequence pre-training
  • Interpreting and Debugging NLP Models
  • Learning from Knowledge-bases
  • Adversarial learning ...

πŸ”— Link to Course

Multilingual NLP

To learn the latest concepts for doing multilingual NLP:

  • Typology
  • Words, Part of Speech, and Morphology
  • Advanced Text Classification
  • Machine Translation
  • Data Augmentation for MT
  • Low Resource ASR
  • Active Learning ...

πŸ”— Link to Course

Advanced NLP

To learn advanced concepts in NLP:

  • Attention Mechanisms
  • Transformers
  • BERT
  • Question Answering
  • Model Distillation
  • Vision + Language
  • Ethics in NLP
  • Commonsense Reasoning ...

πŸ”— Link to Course

Deep Learning for Computer Vision

To learn some of the fundamental concepts in CV:

  • Introduction to deep learning for CV
  • Image Classification
  • Convolutional Networks
  • Attention Networks
  • Detection and Segmentation
  • Generative Models ...

πŸ”— Link to Course

AMMI Geometric Deep Learning Course (2021)

To learn about concepts in geometric deep learning:

  • Learning in High Dimensions
  • Geometric Priors
  • Grids
  • Manifolds and Meshes
  • Sequences and Time Warping ...

πŸ”— Link to Course

Deep Reinforcement Learning

To learn the latest concepts in deep RL:

  • Intro to RL
  • RL algorithms
  • Real-world sequential decision making
  • Supervised learning of behaviors
  • Deep imitation learning
  • Cost functions and reward functions ...

πŸ”— Link to Course

Full Stack Deep Learning

To learn full-stack production deep learning:

  • ML Projects
  • Infrastructure and Tooling
  • Experiment Managing
  • Troubleshooting DNNs
  • Data Management
  • Data Labeling
  • Monitoring ML Models
  • Web deployment ...

πŸ”— Link to Course

Introduction to Deep Learning and Deep Generative Models

Covers the fundamental concepts of deep learning

  • Single-layer neural networks and gradient descent
  • Multi-layer neura networks and backpropagation
  • Convolutional neural networks for images
  • Recurrent neural networks for text
  • autoencoders, variational autoencoders, and generative adversarial networks
  • encoder-decoder recurrent neural networks and transformers
  • PyTorch code examples

πŸ”— Link to Course πŸ”— Link to Materials


What's Next?

There are many plans to keep improving this collection. For instance, I will be sharing notes and better organizing individual lectures in a way that provides a bit of guidance for those that are getting started with machine learning.

If you are interested to contribute, feel free to open a PR with links to all individual lectures for each course. It will take a bit of time, but I have plans to do many things with these individual lectures. We can summarize the lectures, include notes, provide additional reading material, include difficulty of content, etc.

Owner
DAIR.AI
Democratizing Artificial Intelligence Research, Education, and Technologies
DAIR.AI
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

PaweΕ‚ RoΕ›ciszewski 131 Dec 12, 2022
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
ZenML πŸ™: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started β€’ Features & Screenshots β€’ Support β€’ Report a Bug β€’ FAQ β€’ Known Issu

3 Feb 03, 2021
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessΓ‘-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022