Simulation of early COVID-19 using SIR model and variants (SEIR ...).

Overview

COVID-19-simulation

Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO) of the Federal Technologycal University - Parana (UTFPR-ct) in the scope of the project GYRO4Life

Running the simulation

The code runs based on a csv with the same structure of nc85.csv or oa85.csv files which has a time series of confirmed cases and deaths and metadata information about the region being characterized on the line. Both cases and deaths have to be given for the simulation.

The main code is simulação.py, which receives a couple of arguments:

  • 1: region code (for the csv being used). In case the argument is empty ("-"), it will run for all lines of the csv [ex: -28]
  • 2: Name of the csv file with confirmed cases (omit the '.csv') [ex: nc85.csv -> -nc85]
  • 2: Name of the csv file with confirmed deaths (omit the '.csv') [ex: oa85.csv -> -oa85]
  • 3: Fitting method [-0: basinhopp, -1: differential evolution [default], -2: powell, -3: cobyla] [ex: -1]
  • 4: Boolean and quantity of opening and closure regimes for the simulation for confirmed cases (works as a contingency method reducing the probability of infection). '-0-0' ignores this factor for a simulation without contingency methods. If a quantity is given on the second argument, the boolean argument must be 1 [ex: '-1-1']
  • 5: Boolean and quantity of opening and closure regimes for the simulation for confirmed deaths (works as a contingency method reducing the probability of infection). '-0-0' ignores this factor for a simulation without contingency methods. If a quantity is given on the second argument, the boolean argument must be 1 [ex: '-1-1']
  • 6: Type of simulation [-n: simulation of one location (one csv line), -s: simulation of all csv locations, -b: bootstrap of one location [has uncertainty], -sl: simulation of a location with sensibility analysis] [ex: -n]
  • 7: Simulation period in days [ex: -200]
  • 8: number of days for validation [ex: -5]
  • 9: Subtype of simulation [-mod: hospitalization simulation, -std: SEIR simulation with asymptomatic and deaths]
  • 10: Run tests and additional graphics [-0: no, -1: yes]

Example call for a SEIR simulation with bootstrap using cases and deaths in Brazil. The simulation is done for 200 days and with a validation of 5 days.

python simulacao.py -28 -nc85 -oa85 -1 -1-2-0-0 -b -200 -5 -str -0
Owner
José Paulo Pereira das Dores Savioli
José Paulo Pereira das Dores Savioli
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022