Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

Related tags

Machine LearningBO_GP
Overview

BO-GP

Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

The BO-GP codes are developed using GPy and GPyOpt. The optimizer is non-intrusive and can be linked to any CFD solver.

Reference:

Y. Morita, S. Rezaeiravesh, N. Tabatabaeia, R. Vinuesaa, K. Fukagata, P. Schlatter, Applying Bayesian Optimization with Gaussian Process Regression to Computational Fluid Dynamics Problems, Journal of Computational Physics, 2021.

Exmaple: Turbulent boundary layer (TBL) with non-zero pressure gradient.

See Section 5 in the above reference. The flow is simulated using OpenFOAM.

Questions/Remarks:

Questions can be forwarded to [email protected], [email protected], and [email protected].

List of included files and folders:

  • driver_BOGP.py: main driver for running the example, i.e. BO-GP of pessure-gradient TBL simulated by OpenFOAM.

  • gpOptim/: Bayesian optimization codes based on Gaussian processes, using GPy and GPyOpt.

    • workDir/
      • gpList.dat
    • gpOpt.py
  • OFcase/: OpenFOAM case folder

    • system/
      • yTopParams.in (written in main_pre.py, used by blockMeshDict & controlDict).
      • blockMeshDict
      • controlDict
      • decomposeParDict
      • fvSchemes
      • fvSolution
    • 0/
      • U,p,k,omega,nut
      • *_IC files (use inflow.py to make these files).
    • constant/
      • polyMesh/ (not included)
      • transportProperties
    • jobscript
    • OFrun.sh
  • OFpost/: Post-processing the results of OFcase.

    • main_post.py
  • OFpre/: Pre-processing the OFcase

    • main_pre.py: creating yTopParams.in using the latest parameter sample.
    • inflow/inflow_gen.py: Creating inflow conditions for RANS of TBL with pressure gradient using DNS data for the TBL with zero-pressure gradient.
  • figs/: To save figures produced when running the optimization.

    • make_movie.sh: make movie in png/ from pdf files.
  • data/: Created when running the BO-GP.

  • storage/: Created when running the BO-GP.

Settings & inputs (to run the example):

  • In driver_BOGP_example.py: U_infty, delta99_in, Nx, Ny, Nz, t, loop params, path, beta_t etc.
  • /gpOptim/gpOpt.py: number of parameters, range of parameters, tolerance, GP kernel, xi, etc.

Requirements:

  1. python3.X
  2. numpy
  3. matplotlib
  4. GPy
  5. GpyOpt
  6. OpenFOAM v.7 (or v.6)
  7. bl_data/ in OFpre/inflow/ (DNS data from here)

How to test the example for different settings:

  • To change the structure of the geometry

    • create the new inflow from precursor using OFpre/inflow/inflow_gen.py (precursor results required)
    • update the blockMeshDict
    • update the driver accordingly
  • To change the number of prosessors used for the OpenFOAM simulation

    • update nProcessors in the driver
    • update decomposeParDict
    • update jobScript
  • To change the parameterization of the upper wall

    • change qBound in gpOpt.py
    • update blockMeshDict
  • To change beta_t (target pressure-gradient parameter beta)

    • change beta_t in the driver
  • When you clone this repository and get errors, please try run:

    • mkdir data
    • mkdir storage
    • mkdir OFcase/constant/polyMesh/
Owner
KTH Mechanics
KTH Mechanics
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022