Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

Related tags

Machine LearningBO_GP
Overview

BO-GP

Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

The BO-GP codes are developed using GPy and GPyOpt. The optimizer is non-intrusive and can be linked to any CFD solver.

Reference:

Y. Morita, S. Rezaeiravesh, N. Tabatabaeia, R. Vinuesaa, K. Fukagata, P. Schlatter, Applying Bayesian Optimization with Gaussian Process Regression to Computational Fluid Dynamics Problems, Journal of Computational Physics, 2021.

Exmaple: Turbulent boundary layer (TBL) with non-zero pressure gradient.

See Section 5 in the above reference. The flow is simulated using OpenFOAM.

Questions/Remarks:

Questions can be forwarded to [email protected], [email protected], and [email protected].

List of included files and folders:

  • driver_BOGP.py: main driver for running the example, i.e. BO-GP of pessure-gradient TBL simulated by OpenFOAM.

  • gpOptim/: Bayesian optimization codes based on Gaussian processes, using GPy and GPyOpt.

    • workDir/
      • gpList.dat
    • gpOpt.py
  • OFcase/: OpenFOAM case folder

    • system/
      • yTopParams.in (written in main_pre.py, used by blockMeshDict & controlDict).
      • blockMeshDict
      • controlDict
      • decomposeParDict
      • fvSchemes
      • fvSolution
    • 0/
      • U,p,k,omega,nut
      • *_IC files (use inflow.py to make these files).
    • constant/
      • polyMesh/ (not included)
      • transportProperties
    • jobscript
    • OFrun.sh
  • OFpost/: Post-processing the results of OFcase.

    • main_post.py
  • OFpre/: Pre-processing the OFcase

    • main_pre.py: creating yTopParams.in using the latest parameter sample.
    • inflow/inflow_gen.py: Creating inflow conditions for RANS of TBL with pressure gradient using DNS data for the TBL with zero-pressure gradient.
  • figs/: To save figures produced when running the optimization.

    • make_movie.sh: make movie in png/ from pdf files.
  • data/: Created when running the BO-GP.

  • storage/: Created when running the BO-GP.

Settings & inputs (to run the example):

  • In driver_BOGP_example.py: U_infty, delta99_in, Nx, Ny, Nz, t, loop params, path, beta_t etc.
  • /gpOptim/gpOpt.py: number of parameters, range of parameters, tolerance, GP kernel, xi, etc.

Requirements:

  1. python3.X
  2. numpy
  3. matplotlib
  4. GPy
  5. GpyOpt
  6. OpenFOAM v.7 (or v.6)
  7. bl_data/ in OFpre/inflow/ (DNS data from here)

How to test the example for different settings:

  • To change the structure of the geometry

    • create the new inflow from precursor using OFpre/inflow/inflow_gen.py (precursor results required)
    • update the blockMeshDict
    • update the driver accordingly
  • To change the number of prosessors used for the OpenFOAM simulation

    • update nProcessors in the driver
    • update decomposeParDict
    • update jobScript
  • To change the parameterization of the upper wall

    • change qBound in gpOpt.py
    • update blockMeshDict
  • To change beta_t (target pressure-gradient parameter beta)

    • change beta_t in the driver
  • When you clone this repository and get errors, please try run:

    • mkdir data
    • mkdir storage
    • mkdir OFcase/constant/polyMesh/
Owner
KTH Mechanics
KTH Mechanics
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023