Bayesian Additive Regression Trees For Python

Overview

BartPy

Build Status

Introduction

BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1].

Reasons to use BART

  • Much less parameter optimization required that GBT
  • Provides confidence intervals in addition to point estimates
  • Extremely flexible through use of priors and embedding in bigger models

Reasons to use the library:

  • Can be plugged into existing sklearn workflows
  • Everything is done in pure python, allowing for easy inspection of model runs
  • Designed to be extremely easy to modify and extend

Trade offs:

  • Speed - BartPy is significantly slower than other BART libraries
  • Memory - BartPy uses a lot of caching compared to other approaches
  • Instability - the library is still under construction

How to use:

There are two main APIs for BaryPy:

  1. High level sklearn API
  2. Low level access for implementing custom conditions

If possible, it is recommended to use the sklearn API until you reach something that can't be implemented that way. The API is easier, shared with other models in the ecosystem, and allows simpler porting to other models.

Sklearn API

The high level API works as you would expect

from bartpy.sklearnmodel import SklearnModel
model = SklearnModel() # Use default parameters
model.fit(X, y) # Fit the model
predictions = model.predict() # Make predictions on the train set
out_of_sample_predictions = model.predict(X_test) # Make predictions on new data

The model object can be used in all of the standard sklearn tools, e.g. cross validation and grid search

from bartpy.sklearnmodel import SklearnModel
model = SklearnModel() # Use default parameters
cross_validate(model)
Extensions

BartPy offers a number of convenience extensions to base BART. The most prominent of these is using BART to predict the residuals of a base model. It is most natural to use a linear model as the base, but any sklearn compatible model can be used

from bartpy.extensions.baseestimator import ResidualBART
model = ResidualBART(base_estimator=LinearModel())
model.fit(X, y)

A nice feature of this is that we can combine the interpretability of a linear model with the power of a trees model

Lower level API

BartPy is designed to expose all of its internals, so that it can be extended and modifier. In particular, using the lower level API it is possible to:

  • Customize the set of possible tree operations (prune and grow by default)
  • Control the order of sampling steps within a single Gibbs update
  • Extend the model to include additional sampling steps

Some care is recommended when working with these type of changes. Through time the process of changing them will become easier, but today they are somewhat complex

If all you want to customize are things like priors and number of trees, it is much easier to use the sklearn API

Alternative libraries

References

[1] https://arxiv.org/abs/0806.3286 [2] http://www.gatsby.ucl.ac.uk/~balaji/pgbart_aistats15.pdf [3] https://arxiv.org/ftp/arxiv/papers/1309/1309.1906.pdf [4] https://cran.r-project.org/web/packages/BART/vignettes/computing.pdf

Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022