This is the material used in my free Persian course: Machine Learning with Python

Overview

Machine_Learning_intro

:) سلام دوستان

This is the material used in my free Persian course: Machine Learning with Python (available on YouTube).

This 2 hours long course offers a practical introduction into Machine Learning with Python. this course is for you if you are familiar with data analytics libraries in Python (Pandas, NumPy, Matplotlib) and you are looking for a hands-on introduction to Machine Learning. After finishing this course, you will grasp the basic concepts in Machine Learning and be able to use its techniques on any data with Scikit-Learn, the most commonly used library for Machine Learning in Python.

Note

Oddly, the notebook cells are horizontally aligned when rendered on GitHub. I haven't found the solution to this problem unfortunately. However, they are correctly aligned when rendered on Jupyter, so I recommend downloading the notebook files and opening them with Jupyter or Colab or similar IDEs.


Topics covered:

Intro_to_ML_1:

  • 1:
    • What is Machine Learning?
    • Types of Machine Learning
    • Types of Supervised Learning
  • 2.1:
    • Types of Regression
    • Simple Linear Regression
  • 2.2:
    • Model Evaluation in Regression
    • Overfitting
    • Train/test split
    • Cross-Validation
    • Accuracy Metrics for Regression
    • Simple Linear Regression with Python
  • 2.3:
    • Multiple Linear Regression with Python
    • Polynomial Regression with Python
  • 2.4:
    • Regularization
    • Ridge Regression with Python
    • Lasso Regression with Python

Intro_to_ML_2:

  • 3.1:
    • Types of Classification
    • K-nearest neighbors (KNN)
  • 3.2:
    • Evaluation metrics in Classification
    • Confusion Matrix
    • KNN with Python
  • 3.3:
    • Decision Trees with Python
    • Logistic Regression with Python
    • Support Vector Machines (SVM) with Python
  • 3.4:
    • Neural Networks
    • Perceptron with Python
    • Multi-Layer Perceptron (MLP) with Python

Intro_to_ML_3:

  • 4:
    • Why reduce dimensionality?
    • Feature Selection with Python
    • Feature Extraction with Python

Contact

Feel free to email me your questions here: [email protected]

Material gathered, created, and taught by Yara Mohamadi.

Owner
Yara Mohamadi
Yara Mohamadi
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022