ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Related tags

Machine Learningml4h
Overview

ml4h

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more. The diverse data modalities of biomedicine offer different perspectives on the underlying challenge of understanding human health. For this reason, ml4h is built on a foundation of multimodal multitask modeling, hoping to leverage all available data to help power research and inform clinical care. Our tools help apply clinical research standards to ML models by carefully considering bias and longitudinal outcomes. Our project grew out of efforts at the Broad Institute to make it easy to work with the UK Biobank on the Google Cloud Platform and has since expanded to include proprietary data from academic medical centers. To put cutting-edge AI and ML to use making the world healthier, we're fostering interdisciplinary collaborations across industry and academia. We'd love to work with you too!

ml4h is best described with Five Verbs: Ingest, Tensorize, TensorMap, Model, Evaluate

  • Ingest: collect files onto one system
  • Tensorize: write raw files (XML, DICOM, NIFTI, PNG) into HD5 files
  • TensorMap: tag data (typically from an HD5) with an interpretation and a method for generation
  • ModelFactory: connect TensorMaps with a trainable architectures
  • Evaluate: generate plots that enable domain-driven inspection of models and results

Getting Started

Advanced Topics:

  • Tensorizing Data (going from raw data to arrays suitable for modeling, in ml4h/tensorize/README.md, TENSORIZE.md )

Setting up your local environment

Clone the repo

git clone [email protected]:broadinstitute/ml.git

Setting up your cloud environment (optional; currently only GCP is supported)

Make sure you have installed the Google Cloud SDK (gcloud). With Homebrew, you can use

brew cask install google-cloud-sdk

gcloud config set project your-gcp-project

Conda (Python package manager)

  • Download onto your laptop the Miniconda bash or .pkg installer for Python 3.7 and Mac OS X from here, and run it. If you installed Python via a package manager such as Homebrew, you may want to uninstall that first, to avoid potential conflicts.

  • On your laptop, at the root directory of your ml4h GitHub clone, load the ml4h environment via

    conda env create -f env/ml4h_osx64.yml
    

    If you get an error, try updating your Conda via

    sudo conda update -n base -c defaults conda
    

    If you have get an error while installing gmpy, try installing gmp:

    brew install gmp
    

    The version used at the time of this writing was 4.6.1.

    If you plan to run jupyter locally, you should also (after you have conda activate ml4h, run pip install ~/ml (or wherever you have stored the repo)

  • Activate the environment:

    source activate ml4h
    

You may now run code on your Terminal, like so

python recipes.py --mode ...

Note that recipes require having the right input files in place and running them without proper inputs will not yield meaningful results.

PyCharm (Python IDE if interested)

  • Install PyCharm either directly from here, or download the Toolbox App and have the app install PyCharm. The latter makes PyCharm upgrades easier. It also allows you to manage your JetBrains IDEs from a single place if you have multiple (e.g. IntelliJ for Java/Scala).
  • Launch PyCharm.
  • (Optional) Import the custom settings as described here.
  • Open the project on PyCharm from the File menu by pointing to where you have your GitHub repo.
  • Next, configure your Python interpreter to use the Conda environment you set up previously:
    • Open Preferences from PyCharm -> Preferences....
    • On the upcoming Preferences window's left-hand side, expand Project: ml4h if it isn't already.
    • Highlight Project Interpreter.
    • On the right-hand side of the window, where it says Project Interpreter, find and select your python binary installed by Conda. It should be a path like ~/conda/miniconda3/envs/ml4h/bin/python where conda is the directory you may have selected when installing Conda.
    • For a test run:
      • Open recipes.py (shortcut Shift+Cmd+N if you imported the custom settings).
      • Right-click on if __name__=='__main__' and select Run recipes.
      • You can specify input arguments by expanding the Parameters text box on the window that can be opened using the menu Run -> Edit Configurations....

Setting up a remote VM

To create a VM without a GPU run:

./scripts/vm_launch/launch_instance.sh ${USER}-cpu

With GPU (not recommended unless you need something beefy and expensive)

./scripts/vm_launch/launch_dl_instance.sh ${USER}-gpu

This will take a few moments to run, after which you will have a VM in the cloud. Remember to shut it off from the command line or console when you are not using it!

Now ssh onto your instance (replace with proper machine name, note that you can also use regular old ssh if you have the external IP provided by the script or if you login from the GCP console)

gcloud --project your-gcp-project compute ssh ${USER}-gpu --zone us-central1-a

Next, clone this repo on your instance (you should copy your github key over to the VM, and/or if you have Two-Factor authentication setup you need to generate an SSH key on your VM and add it to your github settings as described here):

git clone [email protected]:broadinstitute/ml.git

Because we don't know everyone's username, you need to run one more script to make sure that you are added as a docker user and that you have permission to pull down our docker instances from GCP's gcr.io. Run this while you're logged into your VM:

./ml/scripts/vm_launch/run_once.sh

Note that you may see warnings like below, but these are expected:

WARNING: Unable to execute `docker version`: exit status 1
This is expected if `docker` is not installed, or if `dockerd` cannot be reached...
Configuring docker-credential-gcr as a registry-specific credential helper. This is only supported by Docker client versions 1.13+
/home/username/.docker/config.json configured to use this credential helper for GCR registries

You need to log out after that (exit) then ssh back in so everything takes effect.

Finish setting up docker, test out a jupyter notebook

Now let's run a Jupyter notebook. On your VM run:

${HOME}/ml/scripts/jupyter.sh -p 8889

Add a -c if you want a CPU version.

This will start a notebook server on your VM. If you a Docker error like

docker: Error response from daemon: driver failed programming external connectivity on endpoint agitated_joliot (1fa914cb1fe9530f6599092c655b7036c2f9c5b362aa0438711cb2c405f3f354): Bind for 0.0.0.0:8888 failed: port is already allocated.

overwrite the default port (8888) like so

${HOME}/ml/scripts/dl-jupyter.sh 8889

The command also outputs two command lines in red. Copy the line that looks like this:

ssh -i ~/.ssh/google_compute_engine -nNT -L 8888:localhost:8888 

Open a terminal on your local machine and paste that command.

If you get a public key error run: gcloud compute config-ssh

Now open a browser on your laptop and go to the URL http://localhost:8888

Contributing code

Want to contribute code to this project? Please see CONTRIBUTING for developer setup and other details.

Command line interface

The ml4h package is designed to be accessable through the command line using "recipes". To get started, please see RECIPE_EXAMPLES.

Owner
Broad Institute
Broad Institute of MIT and Harvard
Broad Institute
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022