A flexible CTF contest platform for coming PKU GeekGame events

Overview

Project Guiding Star: the Backend

A flexible CTF contest platform for coming PKU GeekGame events

Still in early development

Highlights

  • Not configurable is most customizable. Every contest has its unique rule, which is unlikely to be fully covered by a text file or SQL table. Our experience shows that these static configurations often disturb contest organizers when they want more customization. Instead, we trust them as decent programmers, leaving the customization to the logic in the source code that is easy to maintain and extend.
  • Pure Python Logic. The core logic that handles submissions, scoreboards, and users are written in plain old Python. Only basic Object-Oriented Programming skill is required before you can start customization. No preknowledge of heavy third-party frameworks is needed.
  • Type-checked. Every function in the codebase is type-annotated and checked by Mypy in strict mode. With type information, you can reliably auto-complete the code and check what breaks after a refactor in a capable IDE.
  • A flexible state machine. The logic splits into one reducer that updates the game state and multiple workers that power read-only APIs and pass actions to the reducer. The state synchronizes in real-time with ZeroMQ sockets. It is easy to attach different kinds of workers that handle push notifications or background jobs to the reducer.
  • Scalable performance. A bonus of the state machine architecture is that only raw submissions are in the database (so that the state can be restored after a service restart). The game state is kept in RAM, making it more performant when updating the scoreboard. The backend is also asynchronous, therefore a laggy OAuth provider will not block other requests.

Architecture

TODO

License

To be considered after the codebase is nearly complete. It may be GPL or something like that.

Currently, you should consider this project as all rights reserved.

Owner
PKU GeekGame
PKU GeekGame
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022