A complete guide to start and improve in machine learning (ML)

Overview

Start Machine Learning in 2021 - Become an expert for free!

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art techniques!

This guide is intended for anyone having zero or a small background in programming, maths, and machine learning. There is no specific order to follow, but a classic path would be from top to bottom. If you don't like reading books, skip it, if you don't want to follow an online course, you can skip it as well. There is not a single way to become a machine learning expert and with motivation, you can absolutely achieve it.

All resources listed here are free, except some online courses and books, which are certainly recommended for a better understanding, but it is definitely possible to become an expert without them, with a little more time spent on online readings, videos and practice. When it comes to paying courses, the links in this guide are affiliated links. Please, use them if you feel like following a course as it will support me. Thank you, and have fun learning! Remember, this is completely up to you and not necessary. I felt like it was useful to me and maybe useful to others as well.

Don't be afraid to repeat videos or learn from multiple sources. Repetition is the key of success to learning!

Maintainer - louisfb01

Feel free to message me any great resources to add to this repository on [email protected]

Tag me on Twitter @Whats_AI or LinkedIn @Louis (What's AI) Bouchard if you share the list!

Want to know what is this guide about? Watch this video:

Watch the video

Table of Contents

Start with short YouTube video introductions

Start with short YouTube videos introductions

This is the best way to start from nothing in my opinion. Here, I list a few of the best videos I found that will give you a great first introduction of the terms you need to know to get started in the field.

Follow free online courses on YouTube

Follow free online courses on YouTube

Here is a list of awesome courses available on YouTube that you should definitely follow and are 100% free.

Read articles

Read many articles

Here is a list of awesome articles available online that you should definitely read and are 100% free.

Read Books

Read some books

Here are some great books to read for the people preferring the reading path.

Great books for building your math background:

A complete Calculus background:

These books are completely optional, but they will provide you a better understanding of the theory and even teach you some stuff about coding your neural networks!

No math background for ML? Check this out!

No math background for ML? Check this out!

Don't stress, just like most of the things in life, you can learn maths! Here are some great beginner and advanced resources to get into machine learning maths. I would suggest starting with these three very important concepts in machine learning (here are 3 awesome free courses available on Khan Academy):

Here are some great free books and videos that might help you learn in a more "structured approach":

If you still lack mathematical confidence, check out the Read books section above, where I shared many great books to build a strong mathematical background. You now have a very good math background for machine learning and you are ready to dive in deeper!

No coding background, no problem

No coding background, no problem

Here is a list of some great courses to learn the programming side of machine learning.

Follow online courses

(Optional) Get a better understanding and more guided practice by following some online courses

If you prefer to be more guided and have clear steps to follow, these courses are the best ones to do.

Practice, practice, and practice!

Practice is key

The most important thing in programming is practice. And this applies to machine learning too. It can be hard to find a personal project to practice.

Fortunately, Kaggle exists. This website is full of free courses, tutorials and competitions. You can join competitions for free and just download their data, read about their problem and start coding and testing right away! You can even earn money from winning competitions and it is a great thing to have on your resume. This may be the best way to get experience while learning a lot and even earn money!

You can also create teams for kaggle competition and learn with people! I suggest you join a community to find a team and learn with others, it is always better than alone. Check out the next section for that.

More Resources

Join communities!

Save Cheat Sheets!

Follow the news in the field!

  • Subscribe to YouTube channels that share new papers - Stay up to date with the news in the field!

  • LinkedIn Groups

  • Facebook Groups

    • Artificial Intelligence & Deep Learning - The definitive and most active FB Group on A.I., Neural Networks and Deep Learning. All things new and interesting on the frontier of A.I. and Deep Learning. Neural networks will redefine what it means to be a smart machine in the years to come.
    • Deep learning - Nowadays society tends to be soft and automated evolving into the 4th industrial revolution, which consequently drives the constituents into the swirl of societal upheaval. To survive or take a lead one is supposed to be equipped with associated tools. Machine is becoming smarter and more intelligent. Machine learning is inescapable skill and it requires people to be familiar with. This group is for these people who are interest in the development of their talents to fit in.
  • Newsletters

    • Synced AI TECHNOLOGY & INDUSTRY REVIEW - China's leading media & information provider for AI & Machine Learning.
    • Inside AI - A daily roundup of stories and commentary on Artificial Intelligence, Robotics, and Neurotechnology.
    • AI Weekly - A weekly collection of AI News and resources on Artificial Intelligence and Machine Learning.
    • AI Ethics Weekly - The latest updates in AI Ethics delivered to your inbox every week.
    • What's AI Weekly - The latest updates in AI explained every week.
  • Follow Medium accounts and publications

    • Towards Data Science - "Sharing concepts, ideas, and codes"
    • Towards AI - "The Best of Tech, Science, and Engineering."
    • OneZero - "The undercurrents of the future. A Medium publication about tech and science."
    • What's AI - "Hi, I am Louis (loo·ee, French pronunciation), from Montreal, Canada, also known as "What's AI". I try to share and explain artificial intelligence terms and news the best way I can for everyone. My goal is to demystify the AI “black box” for everyone and sensitize people about the risks of using it."
  • Check this complete GitHub guide to keep up with AI News

Tag me on Twitter @Whats_AI or LinkedIn @Louis (What's AI) Bouchard if you share the list!

If you'd like to support me, I have a Patreon where you can do that. Thank you, and let me know if I missed any good resources!

This guide is still regularly updated.

ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022