A Time Series Library for Apache Spark

Overview

Flint: A Time Series Library for Apache Spark

The ability to analyze time series data at scale is critical for the success of finance and IoT applications based on Spark. Flint is Two Sigma's implementation of highly optimized time series operations in Spark. It performs truly parallel and rich analyses on time series data by taking advantage of the natural ordering in time series data to provide locality-based optimizations.

Flint is an open source library for Spark based around the TimeSeriesRDD, a time series aware data structure, and a collection of time series utility and analysis functions that use TimeSeriesRDDs. Unlike DataFrame and Dataset, Flint's TimeSeriesRDDs can leverage the existing ordering properties of datasets at rest and the fact that almost all data manipulations and analysis over these datasets respect their temporal ordering properties. It differs from other time series efforts in Spark in its ability to efficiently compute across panel data or on large scale high frequency data.

Documentation Status

Requirements

Dependency Version
Spark Version 2.3 and 2.4
Scala Version 2.12
Python Version 3.5 and above

How to install

Scala artifact is published in maven central:

https://mvnrepository.com/artifact/com.twosigma/flint

Python artifact is published in PyPi:

https://pypi.org/project/ts-flint

Note you will need both Scala and Python artifact to use Flint with PySpark.

How to build

To build from source:

Scala (in top-level dir):

sbt assemblyNoTest

Python (in python subdir):

python setup.py install

or

pip install .

Python bindings

The python bindings for Flint, including quickstart instructions, are documented at python/README.md. API documentation is available at http://ts-flint.readthedocs.io/en/latest/.

Getting Started

Starting Point: TimeSeriesRDD and TimeSeriesDataFrame

The entry point into all functionalities for time series analysis in Flint is TimeSeriesRDD (for Scala) and TimeSeriesDataFrame (for Python). In high level, a TimeSeriesRDD contains an OrderedRDD which could be used to represent a sequence of ordering key-value pairs. A TimeSeriesRDD uses Long to represent timestamps in nanoseconds since epoch as keys and InternalRows as values for OrderedRDD to represent a time series data set.

Create TimeSeriesRDD

Applications can create a TimeSeriesRDD from an existing RDD, from an OrderedRDD, from a DataFrame, or from a single csv file.

As an example, the following creates a TimeSeriesRDD from a gzipped CSV file with header and specific datetime format.

import com.twosigma.flint.timeseries.CSV
val tsRdd = CSV.from(
  sqlContext,
  "file://foo/bar/data.csv",
  header = true,
  dateFormat = "yyyyMMdd HH:mm:ss.SSS",
  codec = "gzip",
  sorted = true
)

To create a TimeSeriesRDD from a DataFrame, you have to make sure the DataFrame contains a column named "time" of type LongType.

import com.twosigma.flint.timeseries.TimeSeriesRDD
import scala.concurrent.duration._
val df = ... // A DataFrame whose rows have been sorted by their timestamps under "time" column
val tsRdd = TimeSeriesRDD.fromDF(dataFrame = df)(isSorted = true, timeUnit = MILLISECONDS)

One could also create a TimeSeriesRDD from a RDD[Row] or an OrderedRDD[Long, Row] by providing a schema, e.g.

import com.twosigma.flint.timeseries._
import scala.concurrent.duration._
val rdd = ... // An RDD whose rows have sorted by their timestamps
val tsRdd = TimeSeriesRDD.fromRDD(
  rdd,
  schema = Schema("time" -> LongType, "price" -> DoubleType)
)(isSorted = true,
  timeUnit = MILLISECONDS
)

It is also possible to create a TimeSeriesRDD from a dataset stored as parquet format file(s). The TimeSeriesRDD.fromParquet() function provides the option to specify which columns and/or the time range you are interested, e.g.

import com.twosigma.flint.timeseries._
import scala.concurrent.duration._
val tsRdd = TimeSeriesRDD.fromParquet(
  sqlContext,
  path = "hdfs://foo/bar/"
)(isSorted = true,
  timeUnit = MILLISECONDS,
  columns = Seq("time", "id", "price"),  // By default, null for all columns
  begin = "20100101",                    // By default, null for no boundary at begin
  end = "20150101"                       // By default, null for no boundary at end
)

Group functions

A group function is to group rows with nearby (or exactly the same) timestamps.

  • groupByCycle A function to group rows within a cycle, i.e. rows with exactly the same timestamps. For example,
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1000L 2.0
// 2000L 3.0
// 2000L 4.0
// 2000L 5.0

val results = priceTSRdd.groupByCycle()
// time  rows
// ------------------------------------------------
// 1000L [[1000L, 1.0], [1000L, 2.0]]
// 2000L [[2000L, 3.0], [2000L, 4.0], [2000L, 5.0]]
  • groupByInterval A function to group rows whose timestamps fall into an interval. Intervals could be defined by another TimeSeriesRDD. Its timestamps will be used to defined intervals, i.e. two sequential timestamps define an interval. For example,
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1500L 2.0
// 2000L 3.0
// 2500L 4.0

val clockTSRdd = ...
// A TimeSeriesRDD with only column "time"
// time
// -----
// 1000L
// 2000L
// 3000L

val results = priceTSRdd.groupByInterval(clockTSRdd)
// time  rows
// ----------------------------------
// 1000L [[1000L, 1.0], [1500L, 2.0]]
// 2000L [[2000L, 3.0], [2500L, 4.0]]
  • addWindows For each row, this function adds a new column whose value for a row is a list of rows within its window.
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1500L 2.0
// 2000L 3.0
// 2500L 4.0

val result = priceTSRdd.addWindows(Window.pastAbsoluteTime("1000ns"))
// time  price window_past_1000ns
// ------------------------------------------------------
// 1000L 1.0   [[1000L, 1.0]]
// 1500L 2.0   [[1000L, 1.0], [1500L, 2.0]]
// 2000L 3.0   [[1000L, 1.0], [1500L, 2.0], [2000L, 3.0]]
// 2500L 4.0   [[1500L, 2.0], [2000L, 3.0], [2500L, 4.0]]

Temporal Join Functions

A temporal join function is a join function defined by a matching criteria over time. A tolerance in temporal join matching criteria specifies how much it should look past or look futue.

  • leftJoin A function performs the temporal left-join to the right TimeSeriesRDD, i.e. left-join using inexact timestamp matches. For each row in the left, append the most recent row from the right at or before the same time. An example to join two TimeSeriesRDDs is as follows.
val leftTSRdd = ...
val rightTSRdd = ...
val result = leftTSRdd.leftJoin(rightTSRdd, tolerance = "1day")
  • futureLeftJoin A function performs the temporal future left-join to the right TimeSeriesRDD, i.e. left-join using inexact timestamp matches. For each row in the left, appends the closest future row from the right at or after the same time.
val result = leftTSRdd.futureLeftJoin(rightTSRdd, tolerance = "1day")

Summarize Functions

Summarize functions are the functions to apply summarizer(s) to rows within a certain period, like cycle, interval, windows, etc.

  • summarizeCycles A function computes aggregate statistics of rows that are within a cycle, i.e. rows share a timestamp.
val volTSRdd = ...
// A TimeSeriesRDD with columns "time", "id", and "volume"
// time  id volume
// ------------
// 1000L 1  100
// 1000L 2  200
// 2000L 1  300
// 2000L 2  400

val result = volTSRdd.summarizeCycles(Summary.sum("volume"))
// time  volume_sum
// ----------------
// 1000L 300
// 2000L 700

Similarly, we could summarize over intervals, windows, or the whole time series data set. See

  • summarizeIntervals
  • summarizeWindows
  • addSummaryColumns

One could check timeseries.summarize.summarizer for different kinds of summarizer(s), like ZScoreSummarizer, CorrelationSummarizer, NthCentralMomentSummarizer etc.

Contributing

In order to accept your code contributions, please fill out the appropriate Contributor License Agreement in the cla folder and submit it to [email protected].

Disclaimer

Apache Spark is a trademark of The Apache Software Foundation. The Apache Software Foundation is not affiliated, endorsed, connected, sponsored or otherwise associated in any way to Two Sigma, Flint, or this website in any manner.

© Two Sigma Open Source, LLC

Owner
Two Sigma
Two Sigma is a financial sciences company. Our scientists use rigorous inquiry, data analysis, and invention to solve tough challenges across financial services
Two Sigma
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
李航《统计学习方法》复现

本项目复现李航《统计学习方法》每一章节的算法 特点: 笔记摘要:在每个文件开头都会有一些核心的摘要 pythonic:这里会用尽可能规范的方式来实现,包括编程风格几乎严格按照PEP8 循序渐进:前期的算法会更list的方式来做计算,可读性比较强,后期几乎完全为numpy.array的计算,并且辅助详

58 Oct 22, 2021
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022