Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

Overview

GENDIS Build Status PyPI version Read The Docs Downloads

GENetic DIscovery of Shapelets

In the time series classification domain, shapelets are small subseries that are discriminative for a certain class. It has been shown that by projecting the original dataset to a distance space, where each axis corresponds to the distance to a certain shapelet, classifiers are able to achieve state-of-the-art results on a plethora of datasets.

This repository contains an implementation of GENDIS, an algorithm that searches for a set of shapelets in a genetic fashion. The algorithm is insensitive to its parameters (such as population size, crossover and mutation probability, ...) and can quickly extract a small set of shapelets that is able to achieve predictive performances similar (or better) to that of other shapelet techniques.

Installation

We currently support Python 3.5 & Python 3.6. For installation, there are two alternatives:

  1. Clone the repository https://github.com/IBCNServices/GENDIS.git and run (python3 -m) pip -r install requirements.txt
  2. GENDIS is hosted on PyPi. You can just run (python3 -m) pip install gendis to add gendis to your dist-packages (you can use it from everywhere).

Make sure NumPy and Cython is already installed (pip install numpy and pip install Cython), since that is required for the setup script.

Tutorial & Example

1. Loading & preprocessing the datasets

In a first step, we need to construct at least a matrix with timeseries (X_train) and a vector with labels (y_train). Additionally, test data can be loaded as well in order to evaluate the pipeline in the end.

import pandas as pd
# Read in the datafiles
train_df = pd.read_csv(<DATA_FILE>)
test_df = pd.read_csv(<DATA_FILE>)
# Split into feature matrices and label vectors
X_train = train_df.drop('target', axis=1)
y_train = train_df['target']
X_test = test_df.drop('target', axis=1)
y_test = test_df['target']

2. Creating a GeneticExtractor object

Construct the object. For a list of all possible parameters, and a description, please refer to the documentation in the code

from gendis.genetic import GeneticExtractor
genetic_extractor = GeneticExtractor(population_size=50, iterations=25, verbose=True, 
                                     mutation_prob=0.3, crossover_prob=0.3, 
                                     wait=10, max_len=len(X_train) // 2)

3. Fit the GeneticExtractor and construct distance matrix

shapelets = genetic_extractor.fit(X_train, y_train)
distances_train = genetic_extractor.transform(X_train)
distances_test = genetic_extractor.transform(X_test)

4. Fit ML classifier on constructed distance matrix

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
lr = LogisticRegression()
lr.fit(distances_train, y_train)

print('Accuracy = {}'.format(accuracy_score(y_test, lr.predict(distances_test))))

Example notebook

A simple example is provided in this notebook

Data

All datasets in this repository are downloaded from timeseriesclassification. Please refer to them appropriately when using any dataset.

Paper experiments

In order to reproduce the results from the corresponding paper, please check out this directory.

Tests

We provide a few doctests and unit tests. To run the doctests: python3 -m doctest -v <FILE>, where <FILE> is the Python file you want to run the doctests from. To run unit tests: nose2 -v

Contributing, Citing and Contact

If you have any questions, are experiencing bugs in the GENDIS implementation, or would like to contribute, please feel free to create an issue/pull request in this repository or take contact with me at gilles(dot)vandewiele(at)ugent(dot)be

If you use GENDIS in your work, please use the following citation:

@article{vandewiele2021gendis,
  title={GENDIS: Genetic Discovery of Shapelets},
  author={Vandewiele, Gilles and Ongenae, Femke and Turck, Filip De},
  journal={Sensors},
  volume={21},
  number={4},
  pages={1059},
  year={2021},
  publisher={Multidisciplinary Digital Publishing Institute}
}
Owner
IDLab Services
Internet and Data Lab research group from Ghent University
IDLab Services
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021