Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

Overview

GENDIS Build Status PyPI version Read The Docs Downloads

GENetic DIscovery of Shapelets

In the time series classification domain, shapelets are small subseries that are discriminative for a certain class. It has been shown that by projecting the original dataset to a distance space, where each axis corresponds to the distance to a certain shapelet, classifiers are able to achieve state-of-the-art results on a plethora of datasets.

This repository contains an implementation of GENDIS, an algorithm that searches for a set of shapelets in a genetic fashion. The algorithm is insensitive to its parameters (such as population size, crossover and mutation probability, ...) and can quickly extract a small set of shapelets that is able to achieve predictive performances similar (or better) to that of other shapelet techniques.

Installation

We currently support Python 3.5 & Python 3.6. For installation, there are two alternatives:

  1. Clone the repository https://github.com/IBCNServices/GENDIS.git and run (python3 -m) pip -r install requirements.txt
  2. GENDIS is hosted on PyPi. You can just run (python3 -m) pip install gendis to add gendis to your dist-packages (you can use it from everywhere).

Make sure NumPy and Cython is already installed (pip install numpy and pip install Cython), since that is required for the setup script.

Tutorial & Example

1. Loading & preprocessing the datasets

In a first step, we need to construct at least a matrix with timeseries (X_train) and a vector with labels (y_train). Additionally, test data can be loaded as well in order to evaluate the pipeline in the end.

import pandas as pd
# Read in the datafiles
train_df = pd.read_csv(<DATA_FILE>)
test_df = pd.read_csv(<DATA_FILE>)
# Split into feature matrices and label vectors
X_train = train_df.drop('target', axis=1)
y_train = train_df['target']
X_test = test_df.drop('target', axis=1)
y_test = test_df['target']

2. Creating a GeneticExtractor object

Construct the object. For a list of all possible parameters, and a description, please refer to the documentation in the code

from gendis.genetic import GeneticExtractor
genetic_extractor = GeneticExtractor(population_size=50, iterations=25, verbose=True, 
                                     mutation_prob=0.3, crossover_prob=0.3, 
                                     wait=10, max_len=len(X_train) // 2)

3. Fit the GeneticExtractor and construct distance matrix

shapelets = genetic_extractor.fit(X_train, y_train)
distances_train = genetic_extractor.transform(X_train)
distances_test = genetic_extractor.transform(X_test)

4. Fit ML classifier on constructed distance matrix

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
lr = LogisticRegression()
lr.fit(distances_train, y_train)

print('Accuracy = {}'.format(accuracy_score(y_test, lr.predict(distances_test))))

Example notebook

A simple example is provided in this notebook

Data

All datasets in this repository are downloaded from timeseriesclassification. Please refer to them appropriately when using any dataset.

Paper experiments

In order to reproduce the results from the corresponding paper, please check out this directory.

Tests

We provide a few doctests and unit tests. To run the doctests: python3 -m doctest -v <FILE>, where <FILE> is the Python file you want to run the doctests from. To run unit tests: nose2 -v

Contributing, Citing and Contact

If you have any questions, are experiencing bugs in the GENDIS implementation, or would like to contribute, please feel free to create an issue/pull request in this repository or take contact with me at gilles(dot)vandewiele(at)ugent(dot)be

If you use GENDIS in your work, please use the following citation:

@article{vandewiele2021gendis,
  title={GENDIS: Genetic Discovery of Shapelets},
  author={Vandewiele, Gilles and Ongenae, Femke and Turck, Filip De},
  journal={Sensors},
  volume={21},
  number={4},
  pages={1059},
  year={2021},
  publisher={Multidisciplinary Digital Publishing Institute}
}
Owner
IDLab Services
Internet and Data Lab research group from Ghent University
IDLab Services
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
This is the material used in my free Persian course: Machine Learning with Python

This is the material used in my free Persian course: Machine Learning with Python

Yara Mohamadi 4 Aug 07, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022