Educational python for Neural Networks, written in pure Python/NumPy.

Overview

EpyNN

EpyNN is written in pure Python/NumPy.

If you use EpyNN in academia, please cite:

Malard F., Danner L., Rouzies E., Meyer J. G., Lescop E., Olivier-Van Stichelen S. EpyNN: Educational python for Neural Networks, 2021, Submitted.

Documentation

Please visit https://epynn.net/ for extensive documentation.

Purpose

EpyNN is intended for teachers, students, scientists, or more generally anyone with minimal skills in Python programming who wish to understand and build from basic implementations of Neural Network architectures.

Although EpyNN can be used for production, it is meant to be a library of homogeneous architecture templates and practical examples which is expected to save an important amount of time for people who wish to learn, teach or develop from scratch.

Content

EpyNN features scalable, minimalistic and homogeneous implementations of major Neural Network architectures in pure Python/Numpy including:

Model and function rules and definition:

While not enhancing, extending or replacing EpyNN's documentation, series of live examples in Python and Jupyter notebook formats are offered online and within the archive, including:

Reliability

EpyNN has been cross-validated against TensorFlow/Keras API and provides identical results for identical configurations in the limit of float64 precision.

Please see Is EpyNN reliable? for details and executable codes.

Recommended install

  • Linux/MacOS
# Use bash shell
bash

# Clone git repository
git clone https://github.com/Synthaze/EpyNN

# Alternatively, not recommended
# pip3 install EpyNN
# epynn

# Change directory to EpyNN
cd EpyNN

# Install EpyNN dependencies
pip3 install -r requirements.txt

# Export EpyNN path in $PYTHONPATH for current session
export PYTHONPATH=$PYTHONPATH:$PWD

Linux: Permanent export of EpyNN directory path in $PYTHONPATH.

> ~/.bashrc # Source .bashrc to refresh $PYTHONPATH source ~/.bashrc ">
# Append export instruction to the end of .bashrc file
echo "export PYTHONPATH=$PYTHONPATH:$PWD" >> ~/.bashrc

# Source .bashrc to refresh $PYTHONPATH
source ~/.bashrc

MacOS: Permanent export of EpyNN directory path in $PYTHONPATH.

> ~/.bash_profile # Source .bash_profile to refresh $PYTHONPATH source ~/.bash_profile ">
# Append export instruction to the end of .bash_profile file
echo "export PYTHONPATH=$PYTHONPATH:$PWD" >> ~/.bash_profile

# Source .bash_profile to refresh $PYTHONPATH
source ~/.bash_profile
  • Windows
# Clone git repository
git clone https://github.com/Synthaze/EpyNN

# Alternatively, not recommended
# pip3 install EpyNN
# epynn

# Change directory to EpyNN
chdir EpyNN

# Install EpyNN dependencies
pip3 install -r requirements.txt

# Show full path of EpyNN directory
echo %cd%

Copy the full path of EpyNN directory, then go to: Control Panel > System > Advanced > Environment variable

If you already have PYTHONPATH in the User variables section, select it and click Edit, otherwise click New to add it.

Paste the full path of EpyNN directory in the input field, keep in mind that paths in PYTHONPATH should be comma-separated.

ANSI coloring schemes do work on native Windows10 and later. For prior Windows versions, users should configure their environment to work with ANSI coloring schemes for optimal experience.

Current release

1.0 - Initial release

  • nnlibs contains API sources.
  • nnlive contains live examples in Python and Jupyter notebook formats.
  • https://epynn.net/ contains extensive documentation.

See CHANGELOG.md for past releases.

Project tree

nnlibs

nnlive

You might also like...
A concept I came up which ditches the idea of
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A modular active learning framework for Python
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Comments
  • update train for images

    update train for images

    better to pick first label of each class programmatically otherwise it can change when then set of images changes. In my nb the indexes you had hardcoded were both class 0

    opened by jgmeyerucsd 1
Releases(v1.2)
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022