scikit-learn is a python module for machine learning built on top of numpy / scipy

Overview

About

scikit-learn is a python module for machine learning built on top of numpy / scipy.

The purpose of the scikit-learn-tutorial subproject is to learn how to apply machine learning to practical situations using the algorithms implemented in the scikit-learn library.

The target audience is experienced Python developers familiar with numpy and scipy.

Downloading the PDF

Prebuilt versions of this tutorial are available from the GitHub download page.

While following the exercices you might find helpful to use the official scikit-learn user guide (PDF) as a more comprehensive reference:

If you need a numpy refresher please first have a look at the Scientific Python lecture notes (PDF), esp. chapter 4.

Online HTML version

The prebuilt HTML version is at:

http://scikit-learn.github.com/scikit-learn-tutorial

Source code of the tutorial and exercises

The project is hosted on GitHub at https://github.com/scikit-learn/scikit-learn-tutorial

Building the tutorial

You can build the HTML and PDF (requires pdflatex) versions of this tutorial by installing sphinx (1.0.0+):

$ sudo pip install -U sphinx

Then for the html variant:

$ cd tutorial
$ make html

The results is available in the _build/html/ subdolder. Point your browser to the index.html file for table of content.

To build the PDF variant:

$ make latex
$ cd _build/latex
$ pdflatex scikit_learn_tutorial.tex

You should get a file named scikit_learn_tutorial.pdf as output.

Testing

The example snippets in the rST source files can be tested with nose:

$ nosetests -s --with-doctest --doctest-tests --doctest-extension=rst

Contact the developers

If you have questions about this tutorial you can ask them on the scikit-learn mailing list on sourceforge: https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Some developers tend to hang around the channel #scikit-learn at irc.freenode.net, especially during the week preparing a new release. If nobody is available to answer your questions there don't hesitate to ask it on the mailing list to reach a wider audience.

License

This tutorial is distributed under the Creative Commons Attribution 3.0 license. The Python example code and solutions to exercises are distributed under the same license as the scikit-learn project (Simplified BSD).

The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022