Winning solution for the Galaxy Challenge on Kaggle

Overview

kaggle-galaxies

Winning solution for the Galaxy Challenge on Kaggle (http://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge).

Documentation about the method and the code is available in doc/documentation.pdf. Information on how to generate the solution file can also be found below.

Generating the solution

Install the dependencies

Instructions for installing Theano and getting it to run on the GPU can be found here. It should be possible to install NumPy, SciPy, scikit-image and pandas using pip or easy_install. To install pylearn2, simply run:

git clone git://github.com/lisa-lab/pylearn2.git

and add the resulting directory to your PYTHONPATH.

The optional dependencies listed in the documentation don't have to be installed to reproduce the winning solution: the generated data files are already provided, so they don't have to be regenerated (but of course you can if you want to). If you want to install them, please refer to their respective documentation.

Download the code

To download the code, run:

git clone git://github.com/benanne/kaggle-galaxies.git

A bunch of data files (extracted sextractor parameters, IDs files, training labels in NumPy format, ...) are also included. I decided to include these since generating them is a bit tedious and requires extra dependencies. It's about 20MB in total, so depending on your connection speed it could take a minute. Cloning the repository should also create the necessary directory structure (see doc/documentation.pdf for more info).

Download the training data

Download the data files from Kaggle. Place and extract the files in the following locations:

  • data/raw/training_solutions_rev1.csv
  • data/raw/images_train_rev1/*.jpg
  • data/raw/images_test_rev1/*.jpg

Note that the zip file with the training images is called images_training_rev1.zip, but they should go in a directory called images_train_rev1. This is just for consistency.

Create data files

This step may be skipped. The necessary data files have been included in the git repository. Nevertheless, if you wish to regenerate them (or make changes to how they are generated), here's how to do it.

  • create data/train_ids.npy by running python create_train_ids_file.py.
  • create data/test_ids.npy by running python create_test_ids_file.py.
  • create data/solutions_train.npy by running python convert_training_labels_to_npy.py.
  • create data/pysex_params_extra_*.npy.gz by running python extract_pysex_params_extra.py.
  • create data/pysex_params_gen2_*.npy.gz by running python extract_pysex_params_gen2.py.

Copy data to RAM

Copy the train and test images to /dev/shm by running:

python copy_data_to_shm.py

If you don't want to do this, you'll need to modify the realtime_augmentation.py file in a few places. Please refer to the documentation for more information.

Train the networks

To train the best single model, run:

python try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.py

On a GeForce GTX 680, this took about 67 hours to run to completion. The prediction file generated by this script, predictions/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.csv.gz, should get you a score that's good enough to land in the #1 position (without any model averaging). You can similarly run the other try_*.py scripts to train the other models I used in the winning ensemble.

If you have more than 2GB of GPU memory, I recommend disabling Theano's garbage collector with allow_gc=False in your .theanorc file or in the THEANO_FLAGS environment variable, for a nice speedup. Please refer to the Theano documentation for more information on how to get the most out Theano's GPU support.

Generate augmented predictions

To generate predictions which are averaged across multiple transformations of the input, run:

python predict_augmented_npy_maxout2048_extradense.py

This takes just over 4 hours on a GeForce GTX 680, and will create two files predictions/final/augmented/valid/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.npy.gz and predictions/final/augmented/test/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.npy.gz. You can similarly run the corresponding predict_augmented_npy_*.py files for the other models you trained.

Blend augmented predictions

To generate blended prediction files from all the models for which you generated augmented predictions, run:

python ensemble_predictions_npy.py

The script checks which files are present in predictions/final/augmented/test/ and uses this to determine the models for which predictions are available. It will create three files:

  • predictions/final/blended/blended_predictions_uniform.npy.gz: uniform blend.
  • predictions/final/blended/blended_predictions.npy.gz: weighted linear blend.
  • predictions/final/blended/blended_predictions_separate.npy.gz: weighted linear blend, with separate weights for each question.

Convert prediction file to CSV

Finally, in order to prepare the predictions for submission, the prediction file needs to be converted from .npy.gz format to .csv.gz. Run the following to do so (or similarly for any other prediction file in .npy.gz format):

python create_submission_from_npy.py predictions/final/blended/blended_predictions_uniform.npy.gz

Submit predictions

Submit the file predictions/final/blended/blended_predictions_uniform.csv.gz on Kaggle to get it scored. Note that the process of generating this file involves considerable randomness: the weights of the networks are initialised randomly, the training data for each chunk is randomly selected, ... so I cannot guarantee that you will achieve the same score as I did. I did not use fixed random seeds. This might not have made much of a difference though, since different GPUs and CUDA toolkit versions will also introduce different rounding errors.

Owner
Sander Dieleman
Sander Dieleman
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022