A simple machine learning package to cluster keywords in higher-level groups.

Overview

Simple Keyword Clusterer

A simple machine learning package to cluster keywords in higher-level groups.

Example:
"Senior Frontend Engineer" --> "Frontend Engineer"
"Junior Backend developer" --> "Backend developer"


Installation

pip install simple_keyword_clusterer

Usage

# import the package
from simple_keyword_clusterer import Clusterer

# read your keywords in list
with open("../my_keywords.txt", "r") as f:
    data = f.read().splitlines()

# instantiate object
clusterer = Clusterer()

# apply clustering
df = clusterer.extract(data)

print(df)

clustering_example

Performance

The algorithm will find the optimal number of clusters automatically based on the best Silhouette Score.

You can specify the number of clusters yourself too

# instantiate object
clusterer = Clusterer(n_clusters=4)

# apply clustering
df = clusterer.extract(data)

For best performance, try to reduce the variance of data by providing the same semantic context
(the job title keywords file should remain coherent, in that it shouldn't contain other stuff like gardening keywords).

If items are clearly separable, the algorithm should still be able to provide a useable output.

Customization

You can customize the clustering mechanism through the files

  • blacklist.txt
  • to_normalize.txt

If you notice that the clustering identifies unwanted groups, you can blacklist certain words simply by appending them in the blacklist.txt file.

The to_normalize.txt file contains tuples that identify a transformation to apply to the keyword. For instance

("back end", "backend), ("front end", "frontend), ("sr", "Senior"), ("jr", "junior")

Simply add your tuples to use this functionality.

Dependencies

  • Scikit-learn
  • Pandas
  • Matplotlib
  • Seaborn
  • Numpy
  • NLTK
  • Tqdm

Make sure to download NLTK English stopwords and punctuation with the command

nltk.download("stopwords")
nltk.download('punkt')

Contact

If you feel like contacting me, do so and send me a mail. You can find my contact information on my website.

Owner
Andrea D'Agostino
Andrea D'Agostino
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
SPCL 48 Dec 12, 2022
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

sklearn-compatible Random Bits Forest Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a b

Tamas Madl 8 Jul 24, 2021
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022