Extreme Learning Machine implementation in Python

Overview

Python-ELM v0.3

---> ARCHIVED March 2021 <---

This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn.
From the abstract:

It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: 1) the slow gradient- based learning algorithms are extensively used to train neural networks, and 2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these traditional implementations, this paper proposes a new learning algorithm called extreme learning machine (ELM) for single- hidden layer feedforward neural networks (SLFNs) which ran- domly chooses the input weights and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide the best generalization performance at extremely fast learning speed. The experimental results based on real- world benchmarking function approximation and classification problems including large complex applications show that the new algorithm can produce best generalization performance in some cases and can learn much faster than traditional popular learning algorithms for feedforward neural networks.

It's a work in progress, so things can/might/will change.

David C. Lambert
dcl [at] panix [dot] com

Copyright © 2013
License: Simple BSD

Files

random_layer.py

Contains the RandomLayer, MLPRandomLayer, RBFRandomLayer and GRBFRandomLayer classes.

RandomLayer is a transformer that creates a feature mapping of the inputs that corresponds to a layer of hidden units with randomly generated components.

The transformed values are a specified function of input activations that are a weighted combination of dot product (multilayer perceptron) and distance (rbf) activations:

  input_activation = alpha * mlp_activation + (1-alpha) * rbf_activation

  mlp_activation(x) = dot(x, weights) + bias
  rbf_activation(x) = rbf_width * ||x - center||/radius

mlp_activation is multi-layer perceptron input activation

rbf_activation is radial basis function input activation

alpha and rbf_width are specified by the user

weights and biases are taken from normal distribution of mean 0 and sd of 1

centers are taken uniformly from the bounding hyperrectangle of the inputs, and

radius = max(||x-c||)/sqrt(n_centers*2)

(All random components can be supplied by the user by providing entries in the dictionary given as the user_components parameter.)

The input activation is transformed by a transfer function that defaults to numpy.tanh if not specified, but can be any callable that returns an array of the same shape as its argument (the input activation array, of shape [n_samples, n_hidden]).

Transfer functions provided are:

  • sine
  • tanh
  • tribas
  • inv_tribas
  • sigmoid
  • hardlim
  • softlim
  • gaussian
  • multiquadric
  • inv_multiquadric

MLPRandomLayer and RBFRandomLayer classes are just wrappers around the RandomLayer class, with the alpha mixing parameter set to 1.0 and 0.0 respectively (for 100% MLP input activation, or 100% RBF input activation)

The RandomLayer, MLPRandomLayer, RBFRandomLayer classes can take a callable user provided transfer function. See the docstrings and the example ipython notebook for details.

The GRBFRandomLayer implements the Generalized Radial Basis Function from [3]

elm.py

Contains the ELMRegressor, ELMClassifier, GenELMRegressor, and GenELMClassifier classes.

GenELMRegressor and GenELMClassifier both take *RandomLayer instances as part of their contructors, and an optional regressor (conforming to the sklearn API)for performing the fit (instead of the default linear fit using the pseudo inverse from scipy.pinv2). GenELMClassifier is little more than a wrapper around GenELMRegressor that binarizes the target array before performing a regression, then unbinarizes the prediction of the regressor to make its own predictions.

The ELMRegressor class is a wrapper around GenELMRegressor that uses a RandomLayer instance by default and exposes the RandomLayer parameters in the constructor. ELMClassifier is similar for classification.

plot_elm_comparison.py

A small demo (based on scikit-learn's plot_classifier_comparison) that shows the decision functions of a couple of different instantiations of the GenELMClassifier on three different datasets.

elm_notebook.py

An IPython notebook, illustrating several ways to use the *ELM* and *RandomLayer classes.

Requirements

Written using Python 2.7.3, numpy 1.6.1, scipy 0.10.1, scikit-learn 0.13.1 and ipython 0.12.1

References

[1] http://www.extreme-learning-machines.org

[2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine:
          Theory and Applications", Neurocomputing, vol. 70, pp. 489-501,
          2006.
          
[3] Fernandez-Navarro, et al, "MELM-GRBF: a modified version of the  
          extreme learning machine for generalized radial basis function  
          neural networks", Neurocomputing 74 (2011), 2502-2510
Owner
David C. Lambert
David C. Lambert
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
Simple linear model implementations from scratch.

Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project

Jonathan Sadighian 2 Sep 13, 2021
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.

An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu

PyCaret 6.7k Jan 08, 2023
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023