A python library for Bayesian time series modeling

Overview

PyDLM Build Status Coverage Status

Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and West, 1999) and optimized for fast model fitting and inference.

Updates in the github version

  • A temporary fix on the predict() complexity bug (due to incorrect self-referencing, thanks romainjln@ and buhbuhtig@!). The fixed predict() complxity is O(n). The goal is to make it O(1).
  • A lite version pydlm-lite has been created where dependencies on matplotlib was removed. Going forward, most code refactoring on improving multi-threading and online learning will be done on the pydlm-lite package. The development on pydlm package will primarily focus on supporting broader model classes and more advanced sampling algorithms.
  • Version 0.1.1.11 released on PyPI.

Installation

You can get the package (current version 0.1.1.11) from pypi by

  $ pip install pydlm

You can also get the latest from github

  $ git clone [email protected]:wwrechard/pydlm.git pydlm
  $ cd pydlm
  $ sudo python setup.py install

pydlm depends on the following modules,

  • numpy (for core functionality)
  • matplotlib (for plotting results)
  • Sphinx (for generating documentation)
  • unittest (for testing)

Google data science post example

We use the example from the Google data science post as an example to show how pydlm could be used to analyze the real world data. The code and data is placed under examples/unemployment_insurance/.... The dataset contains weekly counts of initial claims for unemployment during 2004 - 2012 and is available from the R package bsts (which is a popular R package for time series modeling). The raw data is shown below (left)

We see strong annual pattern and some local trend from the data.

A simple model

Following the Google's post, we first build a simple model with only local linear trend and seasonality component.
from pydlm import dlm, trend, seasonality
# A linear trend
linear_trend = trend(degree=1, discount=0.95, name='linear_trend', w=10)
# A seasonality
seasonal52 = seasonality(period=52, discount=0.99, name='seasonal52', w=10)
# Build a simple dlm
simple_dlm = dlm(time_series) + linear_trend + seasonal52

In the actual code, the time series data is scored in the variable time_series. degree=1 indicates the trend is linear (2 stands for quadratic) and period=52 means the seasonality has a periodicy of 52. Since the seasonality is generally more stable, we set its discount factor to 0.99. For local linear trend, we use 0.95 to allow for some flexibility. w=10 is the prior guess on the variance of each component, the larger number the more uncertain. For actual meaning of these parameters, please refer to the user manual. After the model built, we can fit the model and plot the result (shown above, right figure)

# Fit the model
simple_dlm.fit()
# Plot the fitted results
simple_dlm.turnOff('data points')
simple_dlm.plot()

The blue curve is the forward filtering result, the green curve is the one-day ahead prediction and the red curve is the backward smoothed result. The light-colored ribbon around the curve is the confidence interval (you might need to zoom-in to see it). The one-day ahead prediction shows this simple model captures the time series somewhat good but loses accuracy around the peak crisis at Week 280 (which is between year 2008 - 2009). The one-day-ahead mean squared prediction error is 0.173 which can be obtained by calling

simple_dlm.getMSE()

We can decompose the time series into each of its components

# Plot each component (attribute the time series to each component)
simple_dlm.turnOff('predict plot')
simple_dlm.turnOff('filtered plot')
simple_dlm.plot('linear_trend')
simple_dlm.plot('seasonal52')

Most of the time series shape is attributed to the local linear trend and the strong seasonality pattern is easily seen. To further verify the performance, we use this simple model for long-term forecasting. In particular, we use the previous 351 week's data to forecast the next 200 weeks and the previous 251 week's data to forecast the next 200 weeks. We lay the predicted results on top of the real data

# Plot the prediction give the first 351 weeks and forcast the next 200 weeks.
simple_dlm.plotPredictN(date=350, N=200)
# Plot the prediction give the first 251 weeks and forcast the next 200 weeks.
simple_dlm.plotPredictN(date=250, N=200)

From the figure we see that after the crisis peak around 2008 - 2009 (Week 280), the simple model can accurately forecast the next 200 weeks (left figure) given the first 351 weeks. However, the model fails to capture the change near the peak if the forecasting start before Week 280 (right figure).

Dynamic linear regression

Now we build a more sophiscated model with extra variables in the data file. The extra variables are stored in the variable `features` in the actual code. To build the dynamic linear regression model, we simply add a new component
# Build a dynamic regression model
from pydlm import dynamic
regressor10 = dynamic(features=features, discount=1.0, name='regressor10', w=10)
drm = dlm(time_series) + linear_trend + seasonal52 + regressor10
drm.fit()
drm.getMSE()

# Plot the fitted results
drm.turnOff('data points')
drm.plot()

dynamic is the component for modeling dynamically changing predictors, which accepts features as its argument. The above code plots the fitted result (top left).

The one-day ahead prediction looks much better than the simple model, particularly around the crisis peak. The mean prediction error is 0.099 which is a 100% improvement over the simple model. Similarly, we also decompose the time series into the three components

drm.turnOff('predict plot')
drm.turnOff('filtered plot')
drm.plot('linear_trend')
drm.plot('seasonal52')
drm.plot('regressor10')

This time, the shape of the time series is mostly attributed to the regressor and the linear trend looks more linear. If we do long-term forecasting again, i.e., use the previous 301 week's data to forecast the next 150 weeks and the previous 251 week's data to forecast the next 200 weeks

drm.plotPredictN(date=300, N=150)
drm.plotPredictN(date=250, N=200)

The results look much better compared to the simple model

Documentation

Detailed documentation is provided in PyDLM with special attention to the User manual.

Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021