Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Overview

Apache Liminal

Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way.

The platform provides the abstractions and declarative capabilities for data extraction & feature engineering followed by model training and serving. Liminal's goal is to operationalize the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production, freeing them from engineering and non-functional tasks, and allowing them to focus on machine learning code and artifacts.

Basics

Using simple YAML configuration, create your own schedule data pipelines (a sequence of tasks to perform), application servers, and more.

Getting Started

A simple getting stated guide for Liminal can be found here

Apache Liminal Documentation

Full documentation of Apache Liminal can be found here

High Level Architecture

High level architecture documentation can be found here

Example YAML config file

---
name: MyLiminalStack
owner: Bosco Albert Baracus
volumes:
  - volume: myvol1
    local:
      path: /Users/me/myvol1
pipelines:
  - pipeline: my_pipeline
    start_date: 1970-01-01
    timeout_minutes: 45
    schedule: 0 * 1 * *
    metrics:
      namespace: TestNamespace
      backends: [ 'cloudwatch' ]
    tasks:
      - task: my_python_task
        type: python
        description: static input task
        image: my_python_task_img
        source: write_inputs
        env_vars:
          NUM_FILES: 10
          NUM_SPLITS: 3
        mounts:
          - mount: mymount
            volume: myvol1
            path: /mnt/vol1
        cmd: python -u write_inputs.py
      - task: my_parallelized_python_task
        type: python
        description: parallelized python task
        image: my_parallelized_python_task_img
        source: write_outputs
        env_vars:
          FOO: BAR
        executors: 3
        mounts:
          - mount: mymount
            volume: myvol1
            path: /mnt/vol1
        cmd: python -u write_inputs.py
services:
  - service:
    name: my_python_server
    type: python_server
    description: my python server
    image: my_server_image
    source: myserver
    endpoints:
      - endpoint: /myendpoint1
        module: my_server
        function: myendpoint1func

Installation

  1. Install this repository (HEAD)
   pip install git+https://github.com/apache/incubator-liminal.git
  1. Optional: set LIMINAL_HOME to path of your choice (if not set, will default to ~/liminal_home)
echo 'export LIMINAL_HOME=' >> ~/.bash_profile && source ~/.bash_profile

Authoring pipelines

This involves at minimum creating a single file called liminal.yml as in the example above.

If your pipeline requires custom python code to implement tasks, they should be organized like this

If your pipeline introduces imports of external packages which are not already a part of the liminal framework (i.e. you had to pip install them yourself), you need to also provide a requirements.txt in the root of your project.

Testing the pipeline locally

When your pipeline code is ready, you can test it by running it locally on your machine.

  1. Ensure you have The Docker engine running locally, and enable a local Kubernetes cluster: Kubernetes configured

And allocate it at least 3 CPUs (under "Resources" in the Docker preference UI).

If you want to execute your pipeline on a remote kubernetes cluster, make sure the cluster is configured using :

kubectl config set-context <your remote kubernetes cluster>
  1. Build the docker images used by your pipeline.

In the example pipeline above, you can see that tasks and services have an "image" field - such as "my_static_input_task_image". This means that the task is executed inside a docker container, and the docker container is created from a docker image where various code and libraries are installed.

You can take a look at what the build process looks like, e.g. here

In order for the images to be available for your pipeline, you'll need to build them locally:

cd </path/to/your/liminal/code>
liminal build

You'll see that a number of outputs indicating various docker images built.

  1. Create a kubernetes local volume
    In case your Yaml includes working with volumes please first run the following command:
cd </path/to/your/liminal/code> 
liminal create
  1. Deploy the pipeline:
cd </path/to/your/liminal/code> 
liminal deploy

Note: after upgrading liminal, it's recommended to issue the command

liminal deploy --clean

This will rebuild the airlfow docker containers from scratch with a fresh version of liminal, ensuring consistency.

  1. Start the server
liminal start
  1. Stop the server
liminal stop
  1. Display the server logs
liminal logs --follow/--tail

Number of lines to show from the end of the log:
liminal logs --tail=10

Follow log output:
liminal logs --follow
  1. Navigate to http://localhost:8080/admin

  2. You should see your pipeline The pipeline is scheduled to run according to the json schedule: 0 * 1 * * field in the .yml file you provided.

  3. To manually activate your pipeline: Click your pipeline and then click "trigger DAG" Click "Graph view" You should see the steps in your pipeline getting executed in "real time" by clicking "Refresh" periodically.

Pipeline activation

Contributing

More information on contributing can be found here

Running Tests (for contributors)

When doing local development and running Liminal unit-tests, make sure to set LIMINAL_STAND_ALONE_MODE=True

Owner
The Apache Software Foundation
The Apache Software Foundation
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022