Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Overview

Responsible AI Workshop

Workshop logo

Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in their digital transformation are being called upon to develop and deploy Artificial Intelligence (AI) technologies and Machine Learning (ML)-powered systems (products or services) and/or features (all referred as to AI systems below) more responsibly. And yet many organizations implementing such AI systems report being unprepared to address AI risks and failures, and struggle with new challenges in terms of governance, security and compliance.

Advancements in AI are indeed different than other technologies because of the pace of innovation. There has been hundreds of research papers published every year in the past few years -, but also because of its proximity to human intelligence, impacting us at a personal and societal level.

There are a number of challenges and questions raised through the use of AI technologies. We refer to these as socio-technical impacts. All of these have given rise to an industry debate about how the world should/shouldn't use these new capabilities. It isn't because you can do something that you should necessarily do it.

This project is an attempt to introduce and illustrate the use of:

  • Resources designed to help you responsibly use AI at every stage of innovation - from concept to development, deployment, and beyond.
  • Available toolkits & frameworks that help you integrate relevant Responsible AI features into your AI environment by themes and through the lifecycle stages of your AI system.

It is thus designed to help you or your "customers", whoever they are, to put Responsible AI into practice for your AI-powered solutions throughout their lifecycle.

Workshop Tutorials/Walkthroughs

Work in Progress

This project is a work in progress (WIP).

This project currently contains the following tutorials:

Each of the above tutorials consists of a series of modules for data engineers, data scientists, ML developers, ML engineers, and other AI practitioners, as well as potentially anyone interested considering the wide range of socio-technical aspects involved in the subject.

Prerequisites

The workshop is meant to be hands-on. Therefore, basic knowledge of any version of Python is a prerequisite. It also assumes that you have prior experience training machine learning (ML) models with Python using open-source frameworks like Scikit-Learn, PyTorch, and TensorFlow.

One should also note that this workshop might also be introduced by the following Microsoft Learn learning paths:

Additional resources

From holistically transforming industries to addressing critical issues facing humanity, AI is already solving some of our most complex challenges and redefining how humans and technology interact.

You can visit our Responsible AI resource center where you can find access to tools, guidelines, and additional resources that will help you create a (more) Responsible AI solution:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Legal Notices

Microsoft and any contributors grant you a license to the Microsoft documentation and other content in this repository under the Creative Commons Attribution 4.0 International Public License, see the LICENSE file, and grant you a license to any code in the repository under the MIT License, see the LICENSE-CODE file.

Microsoft, Windows, Microsoft Azure and/or other Microsoft products and services referenced in the documentation may be either trademarks or registered trademarks of Microsoft in the United States and/or other countries. The licenses for this project do not grant you rights to use any Microsoft names, logos, or trademarks. Microsoft's general trademark guidelines can be found at http://go.microsoft.com/fwlink/?LinkID=254653.

Privacy information can be found at https://privacy.microsoft.com/en-us/

Microsoft and any contributors reserve all other rights, whether under their respective copyrights, patents, or trademarks, whether by implication, estoppel or otherwise.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Machine Learning Techniques using python.

šŸ‘‹ Hi, I’m Fahad from TEXAS TECH. šŸ‘€ I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Katana project is a template for ASAP šŸš€ ML application deployment

Katana project is a FastAPI template for ASAP šŸš€ ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022