Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Overview

Amplo - AutoML (for Machine Data)

image PyPI - License

Welcome to the Automated Machine Learning package Amplo. Amplo's AutoML is designed specifically for machine data and works very well with tabular time series data (especially unbalanced classification!).

Though this is a standalone Python package, Amplo's AutoML is also available on Amplo's Smart Maintenance Platform. With a graphical user interface and various data connectors, it is the ideal place for service engineers to get started on Predictive.

Amplo's AutoML Pipeline contains the entire Machine Learning development cycle, including exploratory data analysis, data cleaning, feature extraction, feature selection, model selection, hyper parameter optimization, stacking, version control, production-ready models and documentation. It comes with additional tools such as interval analysers, drift detectors, data quality checks, etc.

Downloading Amplo

The easiest way is to install our Python package through PyPi:

pip install Amplo

2. Usage

Usage is very simple with Amplo's AutoML Pipeline.

from Amplo import Pipeline
from sklearn.datasets import make_classification
from sklearn.datasets import make_regression


x, y = make_classification()
pipeline = Pipeline()
pipeline.fit(x, y)
yp = pipeline.predict_proba(x)

x, y = make_regression()
pipeline = Pipeline()
pipeline.fit(x, y)
yp = pipeline.predict(x)

3. Amplo AutoML Features

Interval Analyser

from Amplo.AutoML import IntervalAnalyser

Interval Analyser for Log file classification. When log files have to be classified, and there is not enough data for time series methods (such as LSTMs, ROCKET or Weasel, Boss, etc), one needs to fall back to classical machine learning models which work better with lower samples. This raises the problem of which samples to classify. You shouldn't just simply classify on every sample and accumulate, that may greatly disrupt classification performance. Therefore, we introduce this interval analyser. By using an approximate K-Nearest Neighbors algorithm, one can estimate the strength of correlation for every sample inside a log. Using this allows for better interval selection for classical machine learning models.

To use this interval analyser, make sure that your logs are located in a folder of their class, with one parent folder with all classes, e.g.:

+-- Parent Folder
|   +-- Class_1
|       +-- Log_1.*
|       +-- Log_2.*
|   +-- Class_2
|       +-- Log_3.*

Exploratory Data Analysis

from Amplo.AutoML import DataExplorer

Automated Exploratory Data Analysis. Covers binary classification and regression. It generates:

  • Missing Values Plot
  • Line Plots of all features
  • Box plots of all features
  • Co-linearity Plot
  • SHAP Values
  • Random Forest Feature Importance
  • Predictive Power Score

Additional plots for Regression:

  • Seasonality Plots
  • Differentiated Variance Plot
  • Auto Correlation Function Plot
  • Partial Auto Correlation Function Plot
  • Cross Correlation Function Plot
  • Scatter Plots

Data Processing

from Amplo.AutoML import DataProcesser

Automated Data Cleaning:

  • Infers & converts data types (integer, floats, categorical, datetime)
  • Reformats column names
  • Removes duplicates columns and rows
  • Handles missing values by:
    • Removing columns
    • Removing rows
    • Interpolating
    • Filling with zero's
  • Removes outliers using:
    • Clipping
    • Z-score
    • Quantiles
  • Removes constant columns

Data Sampler

from Amplo.AutoML import DataSampler

This pipeline is designed to handle unbalanced classification problems. Aside weighted loss functions, under sampling the majority class or down sampling the minority class helps. Various algorithms are analysed:

  • SMOTE
  • Borderline SMOTE
  • Random Over Sampler
  • Tomek Links
  • One Sided Selection
  • Random Under Sampler
  • Edited Nearest Neighbours
  • SMOTE Tomek
  • SMOTE Edited Nearest Neighbours

Feature Processing

from Amplo.AutoML import FeatureProcesser

Automatically extracts and selects features. Removes Co-Linear Features. Included Feature Extraction algorithms:

  • Multiplicative Features
  • Dividing Features
  • Additive Features
  • Subtractive Features
  • Trigonometric Features
  • K-Means Features
  • Lagged Features
  • Differencing Features
  • Inverse Features
  • Datetime Features

Included Feature Selection algorithms:

  • Random Forest Feature Importance (Threshold and Increment)
  • Predictive Power Score

Sequencing

from Amplo.AutoML import Sequencer

For time series regression problems, it is often useful to include multiple previous samples instead of just the latest. This class sequences the data, based on which time steps you want included in the in- and output. This is also very useful when working with tensors, as a tensor can be returned which directly fits into a Recurrent Neural Network.

Modelling

from Amplo.AutoML import Modeller

Runs various regression or classification models. Includes:

  • Scikit's Linear Model
  • Scikit's Random Forest
  • Scikit's Bagging
  • Scikit's GradientBoosting
  • Scikit's HistGradientBoosting
  • DMLC's XGBoost
  • Catboost's Catboost
  • Microsoft's LightGBM
  • Stacking Models

Grid Search

from Amplo.GridSearch import *

Contains three hyper parameter optimizers with extended predefined model parameters:

  • Grid Search
  • Halving Random Search
  • Optuna's Tree-Parzen-Estimator

Automatic Documntation

from Amplo.AutoML import Documenter

Contains a documenter for classification (binary and multiclass problems), as well as for regression. Creates a pdf report for a Pipeline, including metrics, data processing steps, and everything else to recreate the result.

You might also like...
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

MachineLearningStocks is designed to be an intuitive and highly extensible template project applying machine learning to making stock predictions.
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

MLBox is a powerful Automated Machine Learning python library.
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Releases(v0.10.2)
Owner
Amplo
Zurich based SaaS startup providing a Smart Maintenance Platform
Amplo
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022