The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

Overview

mlflow_hydra_optuna_the_easy_way

The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

Objective

TODO

Usage

1. build docker image to run training jobs

$ make build
docker build \
    -t mlflow_hydra_optuna:the_easy_way \
    -f Dockerfile \
    .
[+] Building 1.8s (10/10) FINISHED
 => [internal] load build definition from Dockerfile                                                                       0.0s
 => => transferring dockerfile: 37B                                                                                        0.0s
 => [internal] load .dockerignore                                                                                          0.0s
 => => transferring context: 2B                                                                                            0.0s
 => [internal] load metadata for docker.io/library/python:3.9.5-slim                                                       1.7s
 => [1/5] FROM docker.io/library/python:[email protected]:9828573e6a0b02b6d0ff0bae0716b027aa21cf8e59ac18a76724d216bab7ef0  0.0s
 => [internal] load build context                                                                                          0.0s
 => => transferring context: 17.23kB                                                                                       0.0s
 => CACHED [2/5] WORKDIR /opt                                                                                              0.0s
 => CACHED [3/5] COPY .//requirements.txt /opt/                                                                            0.0s
 => CACHED [4/5] RUN apt-get -y update &&     apt-get -y install     apt-utils     gcc &&     apt-get clean &&     rm -rf  0.0s
 => [5/5] COPY .//src/ /opt/src/                                                                                           0.0s
 => exporting to image                                                                                                     0.0s
 => => exporting layers                                                                                                    0.0s
 => => writing image sha256:256aa71f14b29d5e93f717724534abf0f173522a7f9260b5d0f2051c4607782e                               0.0s
 => => naming to docker.io/library/mlflow_hydra_optuna:the_easy_way                                                        0.0s

Use 'docker scan' to run Snyk tests against images to find vulnerabilities and learn how to fix them

2. run parameter search and training job

the parameters for optuna and hyper parameter search are in hydra/default.yaml

$ cat hydra/default.yaml
optuna:
  cv: 5
  n_trials: 20
  n_jobs: 1
random_forest_classifier:
  parameters:
    - name: criterion
      suggest_type: categorical
      value_range:
        - gini
        - entropy
    - name: max_depth
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: max_leaf_nodes
      suggest_type: int
      value_range:
        - 2
        - 100
lightgbm_classifier:
  parameters:
    - name: num_leaves
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: max_depth
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: learning_rage
      suggest_type: uniform
      value_range:
        - 0.0001
        - 0.01
    - name: feature_fraction
      suggest_type: uniform
      value_range:
        - 0.001
        - 0.9


$ make run
docker run \
	-it \
	--name the_easy_way \
	-v ~/mlflow_hydra_optuna_the_easy_way/hydra:/opt/hydra \
	-v ~/mlflow_hydra_optuna_the_easy_way/outputs:/opt/outputs \
	mlflow_hydra_optuna:the_easy_way \
	python -m src.main
[2021-10-14 00:41:29,804][__main__][INFO] - config: {'optuna': {'cv': 5, 'n_trials': 20, 'n_jobs': 1}, 'random_forest_classifier': {'parameters': [{'name': 'criterion', 'suggest_type': 'categorical', 'value_range': ['gini', 'entropy']}, {'name': 'max_depth', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'max_leaf_nodes', 'suggest_type': 'int', 'value_range': [2, 100]}]}, 'lightgbm_classifier': {'parameters': [{'name': 'num_leaves', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'max_depth', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'learning_rage', 'suggest_type': 'uniform', 'value_range': [0.0001, 0.01]}, {'name': 'feature_fraction', 'suggest_type': 'uniform', 'value_range': [0.001, 0.9]}]}}
[2021-10-14 00:41:29,805][__main__][INFO] - os cwd: /opt/outputs/2021-10-14/00-41-29
[2021-10-14 00:41:29,807][src.model.model][INFO] - initialize preprocess pipeline: Pipeline(steps=[('standard_scaler', StandardScaler())])
[2021-10-14 00:41:29,810][src.model.model][INFO] - initialize random forest classifier pipeline: Pipeline(steps=[('standard_scaler', StandardScaler()),
                ('model', RandomForestClassifier())])
[2021-10-14 00:41:29,812][__main__][INFO] - params: [SearchParams(name='criterion', suggest_type=<SUGGEST_TYPE.CATEGORICAL: 'categorical'>, value_range=['gini', 'entropy']), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_leaf_nodes', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100))]
[2021-10-14 00:41:29,813][src.model.model][INFO] - new search param: [SearchParams(name='criterion', suggest_type=<SUGGEST_TYPE.CATEGORICAL: 'categorical'>, value_range=['gini', 'entropy']), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_leaf_nodes', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100))]
[2021-10-14 00:41:29,817][src.model.model][INFO] - initialize lightgbm classifier pipeline: Pipeline(steps=[('standard_scaler', StandardScaler()),
                ('model', LGBMClassifier())])
[2021-10-14 00:41:29,819][__main__][INFO] - params: [SearchParams(name='num_leaves', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='learning_rage', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.0001, 0.01)), SearchParams(name='feature_fraction', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.001, 0.9))]
[2021-10-14 00:41:29,820][src.model.model][INFO] - new search param: [SearchParams(name='num_leaves', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='learning_rage', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.0001, 0.01)), SearchParams(name='feature_fraction', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.001, 0.9))]
[2021-10-14 00:41:29,821][src.dataset.load_dataset][INFO] - load iris dataset
[2021-10-14 00:41:29,824][src.search.search][INFO] - estimator: <src.model.model.RandomForestClassifierPipeline object at 0x7f5776aa5f10>
[I 2021-10-14 00:41:29,825] A new study created in memory with name: random_forest_classifier
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
[I 2021-10-14 00:41:30,519] Trial 0 finished with value: 0.96 and parameters: {'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 62}. Best is trial 0 with value: 0.96.
2021/10/14 00:41:30 WARNING mlflow.tracking.context.git_context: Failed to import Git (the Git executable is probably not on your PATH), so Git SHA is not available. Error: Failed to initialize: Bad git executable.
The git executable must be specified in one of the following ways:
    - be included in your $PATH
    - be set via $GIT_PYTHON_GIT_EXECUTABLE
    - explicitly set via git.refresh()

All git commands will error until this is rectified.

This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:
    - quiet|q|silence|s|none|n|0: for no warning or exception
    - warn|w|warning|1: for a printed warning
    - error|e|raise|r|2: for a raised exception

Example:
    export GIT_PYTHON_REFRESH=quiet

/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)


<... long training ...>


[I 2021-10-14 00:41:56,870] Trial 19 finished with value: 0.9466666666666667 and parameters: {'num_leaves': 64, 'max_depth': 17, 'learning_rage': 0.0070407009344824675, 'feature_fraction': 0.4416643843187271}. Best is trial 0 with value: 0.9466666666666667.
[2021-10-14 00:41:57,031][src.search.search][INFO] - result for light_gbm_classifier: {'estimator': 'light_gbm_classifier', 'best_score': 0.9466666666666667, 'best_params': {'num_leaves': 17, 'max_depth': 20, 'learning_rage': 0.006952391958964706, 'feature_fraction': 0.8414032025653786}}
[2021-10-14 00:41:57,032][__main__][INFO] - parameter search results: [{'estimator': 'random_forest_classifier', 'best_score': 0.9666666666666668, 'best_params': {'criterion': 'entropy', 'max_depth': 14, 'max_leaf_nodes': 65}}, {'estimator': 'light_gbm_classifier', 'best_score': 0.9466666666666667, 'best_params': {'num_leaves': 17, 'max_depth': 20, 'learning_rage': 0.006952391958964706, 'feature_fraction': 0.8414032025653786}}]
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
[2021-10-14 00:41:57,518][__main__][INFO] - random forest evaluation result: accuracy=0.9777777777777777 precision=0.9777777777777777 recall=0.9777777777777777
/usr/local/lib/python3.9/site-packages/sklearn/preprocessing/_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
/usr/local/lib/python3.9/site-packages/sklearn/preprocessing/_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
[LightGBM] [Warning] Unknown parameter: learning_rage
[LightGBM] [Warning] feature_fraction is set=0.8414032025653786, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.8414032025653786
[2021-10-14 00:41:57,818][__main__][INFO] - lightgbm evaluation result: accuracy=0.9555555555555556 precision=0.9555555555555556 recall=0.9555555555555556

3. training history and artifacts

training history and artifacts are recorded under outputs

$ tree -a outputs
outputs
├── .gitignore
├── .gitkeep
└── 2021-10-14
    └── 00-41-29
        ├── .hydra
        │   ├── config.yaml
        │   ├── hydra.yaml
        │   ├── light_gbm_classifier.yaml
        │   ├── overrides.yaml
        │   └── random_forest_classifier.yaml
        ├── light_gbm_classifier.pickle
        ├── main.log
        ├── mlruns
        │   ├── .trash
        │   └── 0
        │       ├── 001f4913ee2c464e9095894c280a827f
        │       │   ├── artifacts
        │       │   ├── meta.yaml
        │       │   ├── metrics
        │       │   │   └── accuracy
        │       │   ├── params
        │       │   │   ├── feature_fraction
        │       │   │   ├── learning_rage
        │       │   │   ├── max_depth
        │       │   │   ├── model
        │       │   │   └── num_leaves
        │       │   └── tags
        │       │       ├── mlflow.runName
        │       │       ├── mlflow.source.name
        │       │       ├── mlflow.source.type
        │       │       └── mlflow.user

<... many files ...>

        │       └── meta.yaml
        └── random_forest_classifier.pickle

you can also open mlflow ui

$ cd outputs/2021-10-13/13-27-41
$ mlflow ui
[2021-10-13 22:34:51 +0900] [48165] [INFO] Starting gunicorn 20.1.0
[2021-10-13 22:34:51 +0900] [48165] [INFO] Listening at: http://127.0.0.1:5000 (48165)
[2021-10-13 22:34:51 +0900] [48165] [INFO] Using worker: sync
[2021-10-13 22:34:51 +0900] [48166] [INFO] Booting worker with pid: 48166

open localhost:5000 in your web-browser

0

1

Owner
shibuiwilliam
Technical engineer for cloud computing, container, deep learning and AR. MENSA. Author of ml-system-design-pattern. https://www.amazon.co.jp/dp/B08YNMRH4J/
shibuiwilliam
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022