The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

Overview

mlflow_hydra_optuna_the_easy_way

The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

Objective

TODO

Usage

1. build docker image to run training jobs

$ make build
docker build \
    -t mlflow_hydra_optuna:the_easy_way \
    -f Dockerfile \
    .
[+] Building 1.8s (10/10) FINISHED
 => [internal] load build definition from Dockerfile                                                                       0.0s
 => => transferring dockerfile: 37B                                                                                        0.0s
 => [internal] load .dockerignore                                                                                          0.0s
 => => transferring context: 2B                                                                                            0.0s
 => [internal] load metadata for docker.io/library/python:3.9.5-slim                                                       1.7s
 => [1/5] FROM docker.io/library/python:[email protected]:9828573e6a0b02b6d0ff0bae0716b027aa21cf8e59ac18a76724d216bab7ef0  0.0s
 => [internal] load build context                                                                                          0.0s
 => => transferring context: 17.23kB                                                                                       0.0s
 => CACHED [2/5] WORKDIR /opt                                                                                              0.0s
 => CACHED [3/5] COPY .//requirements.txt /opt/                                                                            0.0s
 => CACHED [4/5] RUN apt-get -y update &&     apt-get -y install     apt-utils     gcc &&     apt-get clean &&     rm -rf  0.0s
 => [5/5] COPY .//src/ /opt/src/                                                                                           0.0s
 => exporting to image                                                                                                     0.0s
 => => exporting layers                                                                                                    0.0s
 => => writing image sha256:256aa71f14b29d5e93f717724534abf0f173522a7f9260b5d0f2051c4607782e                               0.0s
 => => naming to docker.io/library/mlflow_hydra_optuna:the_easy_way                                                        0.0s

Use 'docker scan' to run Snyk tests against images to find vulnerabilities and learn how to fix them

2. run parameter search and training job

the parameters for optuna and hyper parameter search are in hydra/default.yaml

$ cat hydra/default.yaml
optuna:
  cv: 5
  n_trials: 20
  n_jobs: 1
random_forest_classifier:
  parameters:
    - name: criterion
      suggest_type: categorical
      value_range:
        - gini
        - entropy
    - name: max_depth
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: max_leaf_nodes
      suggest_type: int
      value_range:
        - 2
        - 100
lightgbm_classifier:
  parameters:
    - name: num_leaves
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: max_depth
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: learning_rage
      suggest_type: uniform
      value_range:
        - 0.0001
        - 0.01
    - name: feature_fraction
      suggest_type: uniform
      value_range:
        - 0.001
        - 0.9


$ make run
docker run \
	-it \
	--name the_easy_way \
	-v ~/mlflow_hydra_optuna_the_easy_way/hydra:/opt/hydra \
	-v ~/mlflow_hydra_optuna_the_easy_way/outputs:/opt/outputs \
	mlflow_hydra_optuna:the_easy_way \
	python -m src.main
[2021-10-14 00:41:29,804][__main__][INFO] - config: {'optuna': {'cv': 5, 'n_trials': 20, 'n_jobs': 1}, 'random_forest_classifier': {'parameters': [{'name': 'criterion', 'suggest_type': 'categorical', 'value_range': ['gini', 'entropy']}, {'name': 'max_depth', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'max_leaf_nodes', 'suggest_type': 'int', 'value_range': [2, 100]}]}, 'lightgbm_classifier': {'parameters': [{'name': 'num_leaves', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'max_depth', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'learning_rage', 'suggest_type': 'uniform', 'value_range': [0.0001, 0.01]}, {'name': 'feature_fraction', 'suggest_type': 'uniform', 'value_range': [0.001, 0.9]}]}}
[2021-10-14 00:41:29,805][__main__][INFO] - os cwd: /opt/outputs/2021-10-14/00-41-29
[2021-10-14 00:41:29,807][src.model.model][INFO] - initialize preprocess pipeline: Pipeline(steps=[('standard_scaler', StandardScaler())])
[2021-10-14 00:41:29,810][src.model.model][INFO] - initialize random forest classifier pipeline: Pipeline(steps=[('standard_scaler', StandardScaler()),
                ('model', RandomForestClassifier())])
[2021-10-14 00:41:29,812][__main__][INFO] - params: [SearchParams(name='criterion', suggest_type=<SUGGEST_TYPE.CATEGORICAL: 'categorical'>, value_range=['gini', 'entropy']), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_leaf_nodes', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100))]
[2021-10-14 00:41:29,813][src.model.model][INFO] - new search param: [SearchParams(name='criterion', suggest_type=<SUGGEST_TYPE.CATEGORICAL: 'categorical'>, value_range=['gini', 'entropy']), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_leaf_nodes', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100))]
[2021-10-14 00:41:29,817][src.model.model][INFO] - initialize lightgbm classifier pipeline: Pipeline(steps=[('standard_scaler', StandardScaler()),
                ('model', LGBMClassifier())])
[2021-10-14 00:41:29,819][__main__][INFO] - params: [SearchParams(name='num_leaves', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='learning_rage', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.0001, 0.01)), SearchParams(name='feature_fraction', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.001, 0.9))]
[2021-10-14 00:41:29,820][src.model.model][INFO] - new search param: [SearchParams(name='num_leaves', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='learning_rage', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.0001, 0.01)), SearchParams(name='feature_fraction', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.001, 0.9))]
[2021-10-14 00:41:29,821][src.dataset.load_dataset][INFO] - load iris dataset
[2021-10-14 00:41:29,824][src.search.search][INFO] - estimator: <src.model.model.RandomForestClassifierPipeline object at 0x7f5776aa5f10>
[I 2021-10-14 00:41:29,825] A new study created in memory with name: random_forest_classifier
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
[I 2021-10-14 00:41:30,519] Trial 0 finished with value: 0.96 and parameters: {'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 62}. Best is trial 0 with value: 0.96.
2021/10/14 00:41:30 WARNING mlflow.tracking.context.git_context: Failed to import Git (the Git executable is probably not on your PATH), so Git SHA is not available. Error: Failed to initialize: Bad git executable.
The git executable must be specified in one of the following ways:
    - be included in your $PATH
    - be set via $GIT_PYTHON_GIT_EXECUTABLE
    - explicitly set via git.refresh()

All git commands will error until this is rectified.

This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:
    - quiet|q|silence|s|none|n|0: for no warning or exception
    - warn|w|warning|1: for a printed warning
    - error|e|raise|r|2: for a raised exception

Example:
    export GIT_PYTHON_REFRESH=quiet

/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)


<... long training ...>


[I 2021-10-14 00:41:56,870] Trial 19 finished with value: 0.9466666666666667 and parameters: {'num_leaves': 64, 'max_depth': 17, 'learning_rage': 0.0070407009344824675, 'feature_fraction': 0.4416643843187271}. Best is trial 0 with value: 0.9466666666666667.
[2021-10-14 00:41:57,031][src.search.search][INFO] - result for light_gbm_classifier: {'estimator': 'light_gbm_classifier', 'best_score': 0.9466666666666667, 'best_params': {'num_leaves': 17, 'max_depth': 20, 'learning_rage': 0.006952391958964706, 'feature_fraction': 0.8414032025653786}}
[2021-10-14 00:41:57,032][__main__][INFO] - parameter search results: [{'estimator': 'random_forest_classifier', 'best_score': 0.9666666666666668, 'best_params': {'criterion': 'entropy', 'max_depth': 14, 'max_leaf_nodes': 65}}, {'estimator': 'light_gbm_classifier', 'best_score': 0.9466666666666667, 'best_params': {'num_leaves': 17, 'max_depth': 20, 'learning_rage': 0.006952391958964706, 'feature_fraction': 0.8414032025653786}}]
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
[2021-10-14 00:41:57,518][__main__][INFO] - random forest evaluation result: accuracy=0.9777777777777777 precision=0.9777777777777777 recall=0.9777777777777777
/usr/local/lib/python3.9/site-packages/sklearn/preprocessing/_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
/usr/local/lib/python3.9/site-packages/sklearn/preprocessing/_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
[LightGBM] [Warning] Unknown parameter: learning_rage
[LightGBM] [Warning] feature_fraction is set=0.8414032025653786, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.8414032025653786
[2021-10-14 00:41:57,818][__main__][INFO] - lightgbm evaluation result: accuracy=0.9555555555555556 precision=0.9555555555555556 recall=0.9555555555555556

3. training history and artifacts

training history and artifacts are recorded under outputs

$ tree -a outputs
outputs
├── .gitignore
├── .gitkeep
└── 2021-10-14
    └── 00-41-29
        ├── .hydra
        │   ├── config.yaml
        │   ├── hydra.yaml
        │   ├── light_gbm_classifier.yaml
        │   ├── overrides.yaml
        │   └── random_forest_classifier.yaml
        ├── light_gbm_classifier.pickle
        ├── main.log
        ├── mlruns
        │   ├── .trash
        │   └── 0
        │       ├── 001f4913ee2c464e9095894c280a827f
        │       │   ├── artifacts
        │       │   ├── meta.yaml
        │       │   ├── metrics
        │       │   │   └── accuracy
        │       │   ├── params
        │       │   │   ├── feature_fraction
        │       │   │   ├── learning_rage
        │       │   │   ├── max_depth
        │       │   │   ├── model
        │       │   │   └── num_leaves
        │       │   └── tags
        │       │       ├── mlflow.runName
        │       │       ├── mlflow.source.name
        │       │       ├── mlflow.source.type
        │       │       └── mlflow.user

<... many files ...>

        │       └── meta.yaml
        └── random_forest_classifier.pickle

you can also open mlflow ui

$ cd outputs/2021-10-13/13-27-41
$ mlflow ui
[2021-10-13 22:34:51 +0900] [48165] [INFO] Starting gunicorn 20.1.0
[2021-10-13 22:34:51 +0900] [48165] [INFO] Listening at: http://127.0.0.1:5000 (48165)
[2021-10-13 22:34:51 +0900] [48165] [INFO] Using worker: sync
[2021-10-13 22:34:51 +0900] [48166] [INFO] Booting worker with pid: 48166

open localhost:5000 in your web-browser

0

1

Owner
shibuiwilliam
Technical engineer for cloud computing, container, deep learning and AR. MENSA. Author of ml-system-design-pattern. https://www.amazon.co.jp/dp/B08YNMRH4J/
shibuiwilliam
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022