Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Overview

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

This repository contains the models that I implemented for this competition as a part of our team.

First level models

Heartkilla (me)

  • Models: RoBERTa-base-squad2, RoBERTa-large-squad2, DistilRoBERTa-base, XLNet-base-cased
  • Concat Avg / Max of last n-1 layers (without embedding layer) and feed into Linear head
  • Multi Sample Dropout, AdamW, linear warmup schedule
  • I used Colab Pro for training.
  • Custom loss: Jaccard-based Soft Labels Since Cross Entropy doesn’t optimize Jaccard directly, I tried different loss functions to penalize far predictions more than close ones. SoftIOU used in segmentation didn’t help so I came up with a custom loss that modifies usual label smoothing by computing Jaccard on the token level. I then use this new target labels and optimize KL divergence. Alpha here is a parameter to balance between usual CE and Jaccard-based labeling. I’ve noticed that probabilities in this case change pretty steeply so I decided to smooth it a bit by adding a square term. This worked best for 3 of my models except DistilRoBERTa which used the previous without-square version. Eventually this loss boosted all of my models by around 0.003. This is a plot of target probabilities for 30 tokens long sentence with start_idx=5 and end_idx=25, alpha=0.3.

I claim that since the probabilities from my models are quite decorrelated with regular CE / SmoothedCE ones, they provided necessary diversity and were crucial to each of our 2nd level models.

Hikkiiii

  • max_len=120, no post-processing
  • Append sentiment token to the end of the text
  • Models: 5fold-roberta-base-squad2(0.712CV), 5fold-roberta-large-squad2(0.714CV)
  • Last 3 hidden states + CNN*1 + linear
  • CrossEntropyLoss, AdamW
  • epoch=5, lr=3e-5, weight_decay=0.001, no scheduler, warmup=0, bsz=32-per-device
  • V100*2, apex(O1) for fast training
  • Traverse the top 20 of start_index and end_index, ensure start_index < end_index

Theo

I took a bet when I joined @cl2ev1 on the competition, which was that working with Bert models (although they perform worse than Roberta) will help in the long run. It did pay off, as our 2nd level models reached 0.735 public using 2 Bert (base, wwm) and 3 Roberta (base, large, distil). I then trained an Albert-large and a Distilbert for diversity.

  • bert-base-uncased (CV 0.710), bert-large-uncased-wwm (CV 0.710), distilbert (CV 0.705), albert-large-v2 (CV 0.711)
  • Squad pretrained weights
  • Multi Sample Dropout on the concatenation of the last n hidden states
  • Simple smoothed categorical cross-entropy on the start and end probabilities
  • I use the auxiliary sentiment from the original dataset as an additional input for training. [CLS] [sentiment] [aux sentiment] [SEP] ... During inference, it is set to neutral
  • 2 epochs, lr = 7e-5 except for distilbert (3 epochs, lr = 5e-5)
  • Sequence bucketing, batch size is the highest power of 2 that could fit on my 2080Ti (128 (distil) / 64 (bert-base) / 32 (albert) / 16 (wwm)) with max_len = 70
  • Bert models have their learning rate decayed closer to the input, and use a higher learning rate for the head (1e-4)
  • Sequence bucketting for faster training

Cl_ev

This competition has a lengthy list of things that did not work, here are things that worked :)

  • Models: roberta-base (CV 0.715), Bertweet (thanks to all that shared it - it helped diversity)
  • MSD, applying to hidden outputs
  • (roberta) pretrained on squad
  • (roberta) custom merges.txt (helps with cases when tokenization would not allow to predict correct start and finish). On it’s own adds about 0.003 - 0.0035 to CV.
  • Discriminative learning
  • Smoothed CE (in some cases weighted CE performed ok, but was dropped)

Second level models

Architectures

Theo came up with 3 different Char-NN architectures that use character-level probabilities from transformers as input. You can see how we utilize them in this notebook.

  • RNN

  • CNN

  • WaveNet (yes, we took that one from the Liverpool competition)

Stacking ensemble

As Theo mentioned here, we feed character level probabilities from transformers into Char-NNs.

However, we decided not to just do it end-to-end (i.e. training 2nd levels on the training data probas), but to use OOF predictions and perform good old stacking. As our team name suggests (one of the Transformers movies) we built quite an army of transformers. This is the stacking pipeline for our 2 submissions. Note that we used different input combinations to 2nd level models for diversity. Inference is also available in this and this kernels.

Pseudo-labeling

We used one of our CV 0.7354 blends to pseudo-label the public test data. We followed the approach from here and created “leakless” pseudo-labels. We then used a threshold of 0.35 to cut off low-confidence samples. The confidence score was determined like: (start_probas.max() + end_probas.max()) / 2. This gave a pretty robust boost of 0.001-0.002 for many models. We’re not sure if it really helps the final score overall since we only did 9 submissions with the full inference.

Other details

Adam optimizer, linear decay schedule with no warmup, SmoothedCELoss such as in level 1 models, Multi Sample Dropout. Some of the models also used Stochastic Weighted Average.

Extra stuff

We did predictions on neutral texts as well, our models were slightly better than doing selected_text = text. However, we do selected_text = text when start_idx > end_idx.

Once the pattern in the labels is detected, it is possible to clean the labels to improve level 1 models performance. Since we found the pattern a bit too late, we decided to stick with the ensembles we already built instead of retraining everything from scratch.

Thanks for reading and happy kaggling!

[Update]

I gave a speech about our solution at the ODS Paris meetup: YouTube link

The presentation: SlideShare link

Owner
Artsem Zhyvalkouski
Data Scientist @ MC Digital / Kaggle Master
Artsem Zhyvalkouski
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Keivan Ipchi Hagh 1 Nov 22, 2021
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022