XAI - An eXplainability toolbox for machine learning

Overview

GitHub GitHub GitHub GitHub

XAI - An eXplainability toolbox for machine learning

XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contains various tools that enable for analysis and evaluation of data and models. The XAI library is maintained by The Institute for Ethical AI & ML, and it was developed based on the 8 principles for Responsible Machine Learning.

You can find the documentation at https://ethicalml.github.io/xai/index.html. You can also check out our talk at Tensorflow London where the idea was first conceived - the talk also contains an insight on the definitions and principles in this library.

YouTube video showing how to use XAI to mitigate undesired biases

This video of the talk presented at the PyData London 2019 Conference which provides an overview on the motivations for machine learning explainability as well as techniques to introduce explainability and mitigate undesired biases using the XAI Library.
Do you want to learn about more awesome machine learning explainability tools? Check out our community-built "Awesome Machine Learning Production & Operations" list which contains an extensive list of tools for explainability, privacy, orchestration and beyond.

0.1.0

If you want to see a fully functional demo in action clone this repo and run the Example Jupyter Notebook in the Examples folder.

What do we mean by eXplainable AI?

We see the challenge of explainability as more than just an algorithmic challenge, which requires a combination of data science best practices with domain-specific knowledge. The XAI library is designed to empower machine learning engineers and relevant domain experts to analyse the end-to-end solution and identify discrepancies that may result in sub-optimal performance relative to the objectives required. More broadly, the XAI library is designed using the 3-steps of explainable machine learning, which involve 1) data analysis, 2) model evaluation, and 3) production monitoring.

We provide a visual overview of these three steps mentioned above in this diagram:

XAI Quickstart

Installation

The XAI package is on PyPI. To install you can run:

pip install xai

Alternatively you can install from source by cloning the repo and running:

python setup.py install 

Usage

You can find example usage in the examples folder.

1) Data Analysis

With XAI you can identify imbalances in the data. For this, we will load the census dataset from the XAI library.

import xai.data
df = xai.data.load_census()
df.head()

View class imbalances for all categories of one column

ims = xai.imbalance_plot(df, "gender")

View imbalances for all categories across multiple columns

im = xai.imbalance_plot(df, "gender", "loan")

Balance classes using upsampling and/or downsampling

bal_df = xai.balance(df, "gender", "loan", upsample=0.8)

Perform custom operations on groups

groups = xai.group_by_columns(df, ["gender", "loan"])
for group, group_df in groups:    
    print(group) 
    print(group_df["loan"].head(), "\n")

Visualise correlations as a matrix

_ = xai.correlations(df, include_categorical=True, plot_type="matrix")

Visualise correlations as a hierarchical dendogram

_ = xai.correlations(df, include_categorical=True)

Create a balanced validation and training split dataset

# Balanced train-test split with minimum 300 examples of 
#     the cross of the target y and the column gender
x_train, y_train, x_test, y_test, train_idx, test_idx = \
    xai.balanced_train_test_split(
            x, y, "gender", 
            min_per_group=300,
            max_per_group=300,
            categorical_cols=categorical_cols)

x_train_display = bal_df[train_idx]
x_test_display = bal_df[test_idx]

print("Total number of examples: ", x_test.shape[0])

df_test = x_test_display.copy()
df_test["loan"] = y_test

_= xai.imbalance_plot(df_test, "gender", "loan", categorical_cols=categorical_cols)

2) Model Evaluation

We are able to also analyse the interaction between inference results and input features. For this, we will train a single layer deep learning model.

= 0.5).astype(int).T[0]) ">
model = build_model(proc_df.drop("loan", axis=1))

model.fit(f_in(x_train), y_train, epochs=50, batch_size=512)

probabilities = model.predict(f_in(x_test))
predictions = list((probabilities >= 0.5).astype(int).T[0])

Visualise permutation feature importance

def get_avg(x, y):
    return model.evaluate(f_in(x), y, verbose=0)[1]

imp = xai.feature_importance(x_test, y_test, get_avg)

imp.head()

Identify metric imbalances against all test data

_= xai.metrics_plot(
        y_test, 
        probabilities)

Identify metric imbalances across a specific column

_ = xai.metrics_plot(
    y_test, 
    probabilities, 
    df=x_test_display, 
    cross_cols=["gender"],
    categorical_cols=categorical_cols)

Identify metric imbalances across multiple columns

_ = xai.metrics_plot(
    y_test, 
    probabilities, 
    df=x_test_display, 
    cross_cols=["gender", "ethnicity"],
    categorical_cols=categorical_cols)

Draw confusion matrix

xai.confusion_matrix_plot(y_test, pred)

Visualise the ROC curve against all test data

_ = xai.roc_plot(y_test, probabilities)

Visualise the ROC curves grouped by a protected column

protected = ["gender", "ethnicity", "age"]
_ = [xai.roc_plot(
    y_test, 
    probabilities, 
    df=x_test_display, 
    cross_cols=[p],
    categorical_cols=categorical_cols) for p in protected]

Visualise accuracy grouped by probability buckets

d = xai.smile_imbalance(
    y_test, 
    probabilities)

Visualise statistical metrics grouped by probability buckets

d = xai.smile_imbalance(
    y_test, 
    probabilities,
    display_breakdown=True)

Visualise benefits of adding manual review on probability thresholds

d = xai.smile_imbalance(
    y_test, 
    probabilities,
    bins=9,
    threshold=0.75,
    manual_review=0.375,
    display_breakdown=False)

Comments
  • matplotlib error while installing package

    matplotlib error while installing package

    Collecting matplotlib==3.0.2

    Using cached matplotlib-3.0.2.tar.gz (36.5 MB) ERROR: Command errored out with exit status 1: command: /opt/anaconda3/envs/ethicalml/bin/python -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/private/var/folders/wv/m62_p54d5bx1dnq_m07ck3l40000gn/T/pip-install-303disb7/matplotlib/setup.py'"'"'; file='"'"'/private/var/folders/wv/m62_p54d5bx1dnq_m07ck3l40000gn/T/pip-install-303disb7/matplotlib/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(file);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, file, '"'"'exec'"'"'))' egg_info --egg-base /private/var/folders/wv/m62_p54d5bx1dnq_m07ck3l40000gn/T/pip-install-303disb7/matplotlib/pip-egg-info

    opened by ArpitSisodia 3
  • Requirements

    Requirements

    your requirements are very restrictive. Can you please change it to >= instead of ==. for example:

    numpy>=1.3
    pandas>=0.23.0
    matplotlib>2.02,<=3.0.3
    scikit-learn>=0.19.0
    
    opened by idanmoradarthas 3
  • converters the probs into np array if its already not

    converters the probs into np array if its already not

    smile_imbalance() funciton argument "probs" does not specify that it is required to be numpy array, but it does so i have added that data type in the argument letting the user know if he/she is to refer to the docs and i have also added a line np.array() which is an idempotent operation(if the array passed is already numpy array then it does nothing but if its not it changes the list into numpy array)

    Suggestion

    • If possible can you guys consider adding "save_plot_path" method to each function, so that when this package is used in production (which i am and people considering Continuous model delivery would use) all these plots could be saved to a particular directory for data scientists to look at later since in production, code would be used in scripts running on EC2 or other cloud servers and not on jupyter notebooks
    • My use case is I am retraining the model every week and XAI allows me to generate a evaluation report allowing me to remotely decide weather to push this weeks mode into production
    • I considered adding it myself but i was not sure if this is the direction you guys wanted to take

    Thank you

    opened by sai-krishna-msk 2
  • Unable to install package

    Unable to install package

    Hello!

    I've been trying to install this package and am unable to do so. I've tried both methods on my Ubuntu machine.

    1. pip install xai
    2. python setup.py install

    What can I do to install this? Also, is this project active anymore at all?

    opened by varunbanda 2
  • Can we explain BERT models using this package?

    Can we explain BERT models using this package?

    I'm working with text data and looking for ways to explain BERT models. Is there any workaround using XAI or any other package/resources if anyone can recommend?

    opened by techwithshadab 1
  • Add a conda install option for `xai`

    Add a conda install option for `xai`

    A conda installation option could be very helpful. I have already started working on this, to add xai to conda-forge.

    Conda-forge PR:

    • https://github.com/conda-forge/staged-recipes/pull/17601

    Once the conda-forge PR is merged, you will be able to install the library with conda as follows:

    conda install -c conda-forge xai
    

    :bulb: I will push a PR to update the docs once the package is available on conda-forge.

    opened by sugatoray 0
  • Wrong series returned from _curve

    Wrong series returned from _curve

    There is some bug in https://github.com/EthicalML/xai/blob/master/xai/init.py#L962

    it was written as

    r1s = r2s = []
    

    but should be instead

    r1s, r2s = [], []
    

    The impact is that if the user would like to us r1s and r2s returned to construct the the curve (e.g. for storing the data for later analysis), they would find that r1s and r2s are referring to the same instance which stores all the curve data that should have been separately stored in r1s and r2s

    opened by chen0040 1
Releases(v0.1.0)
Owner
The Institute for Ethical Machine Learning
The Institute for Ethical Machine Learning is a think-tank that brings together with technology leaders, policymakers & academics to develop standards for ML.
The Institute for Ethical Machine Learning
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

6.2k Jan 01, 2023
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
李航《统计学习方法》复现

本项目复现李航《统计学习方法》每一章节的算法 特点: 笔记摘要:在每个文件开头都会有一些核心的摘要 pythonic:这里会用尽可能规范的方式来实现,包括编程风格几乎严格按照PEP8 循序渐进:前期的算法会更list的方式来做计算,可读性比较强,后期几乎完全为numpy.array的计算,并且辅助详

58 Oct 22, 2021
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022