Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Overview

Price-Prediction-Model

This project’s goal is to develop a machine learning model that can predict a cryptocurrency's future market price.

A LSTM model is trained on historical price data that is pulled in through an API and stored in a relational database.

The model attempts to predict prices for a chosen time window, for both Bitcoin and Ethereum.

Our app is deployed using Heroku:

https://price-prediction-model.herokuapp.com/

Dataset:

The daily crypto price data has been pulled in through an API on CryptoCompare:

https://min-api.cryptocompare.com/documentation?key=Historical&cat=dataHistoday

The pricing information includes: timestamp, high, low, open, volumefrom, volumeto, and close. We will most likely save all the data, but only use one of the pricing metrics to train the model.

ETL proccess

The API data includes timestamp, high, low, open, volumefrom, volumeto, and close. In addition to these columns, we've created a coin, date, and year column.

Data storage

  • We used Heroku Postgres to store data for our app.
  • The database updates only when needed, based on the current and last unix timestamp in the db Database updates up to once daily, when index page loads, based on 00:00 GMT time zone.
  • Time units were daily only.
  • Data for both coins was stored in 1 table, due to limitations of a free Heroku Postgres database.

Long Short Term Memory (LSTM) Model

The Long Short Term Model (LSTM) has been used to do the price forecasting. LSTM is a slightly more sophisticated version of a Recurrent Neural Network (RNN) which incorporates long term memory. The model will be trained on historical price data and used to predict the next value in the series. (Time window for predictions, tbd)

Visualization

HTML/CSS/Plotly has been used to do the visualization and plots. Here are the final plots and Welcome page:

Welcome Page:

Bitcoin PricePerformance Plot and Table:


Bitcoin Candlestick chart:

Bitcoin Price Prediction Model:

Bitcoin Price Acceleration Plot:

Ethereum Price Performance Plot and Table:

Ethereum Candlestick Plot:

Bitcoin vs Ethereum Comparison Table and Plot:


Team Members:

Anna Weeks
Hima Vissa
Jacob Trevithick
Lekshmi Prabha
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022