Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Overview

Price-Prediction-Model

This project’s goal is to develop a machine learning model that can predict a cryptocurrency's future market price.

A LSTM model is trained on historical price data that is pulled in through an API and stored in a relational database.

The model attempts to predict prices for a chosen time window, for both Bitcoin and Ethereum.

Our app is deployed using Heroku:

https://price-prediction-model.herokuapp.com/

Dataset:

The daily crypto price data has been pulled in through an API on CryptoCompare:

https://min-api.cryptocompare.com/documentation?key=Historical&cat=dataHistoday

The pricing information includes: timestamp, high, low, open, volumefrom, volumeto, and close. We will most likely save all the data, but only use one of the pricing metrics to train the model.

ETL proccess

The API data includes timestamp, high, low, open, volumefrom, volumeto, and close. In addition to these columns, we've created a coin, date, and year column.

Data storage

  • We used Heroku Postgres to store data for our app.
  • The database updates only when needed, based on the current and last unix timestamp in the db Database updates up to once daily, when index page loads, based on 00:00 GMT time zone.
  • Time units were daily only.
  • Data for both coins was stored in 1 table, due to limitations of a free Heroku Postgres database.

Long Short Term Memory (LSTM) Model

The Long Short Term Model (LSTM) has been used to do the price forecasting. LSTM is a slightly more sophisticated version of a Recurrent Neural Network (RNN) which incorporates long term memory. The model will be trained on historical price data and used to predict the next value in the series. (Time window for predictions, tbd)

Visualization

HTML/CSS/Plotly has been used to do the visualization and plots. Here are the final plots and Welcome page:

Welcome Page:

Bitcoin PricePerformance Plot and Table:


Bitcoin Candlestick chart:

Bitcoin Price Prediction Model:

Bitcoin Price Acceleration Plot:

Ethereum Price Performance Plot and Table:

Ethereum Candlestick Plot:

Bitcoin vs Ethereum Comparison Table and Plot:


Team Members:

Anna Weeks
Hima Vissa
Jacob Trevithick
Lekshmi Prabha
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023