A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

Overview

🤖 Interactive Machine Learning Experiments

This is a collection of interactive machine-learning experiments. Each experiment consists of 🏋️ Jupyter/Colab notebook (to see how a model was trained) and 🎨 demo page (to see a model in action right in your browser).


⚠️ This repository contains machine learning experiments and not a production ready, reusable, optimised and fine-tuned code and models. This is rather a sandbox or a playground for learning and trying different machine learning approaches, algorithms and data-sets. Models might not perform well and there is a place for overfitting/underfitting.

Experiments

Most of the models in these experiments were trained using TensorFlow 2 with Keras support.

Supervised Machine Learning

Supervised learning is when you have input variables X and an output variable Y and you use an algorithm to learn the mapping function from the input to the output: Y = f(X). The goal is to approximate the mapping function so well that when you have new input data X that you can predict the output variables Y for that data. It is called supervised learning because the process of an algorithm learning from the training dataset can be thought of as a teacher supervising the learning process.

Multilayer Perceptron (MLP) or simple Neural Network (NN)

A multilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN). Multilayer perceptrons are sometimes referred to as "vanilla" neural networks (composed of multiple layers of perceptrons), especially when they have a single hidden layer. It can distinguish data that is not linearly separable.

Experiment Model demo & training Tags Dataset
Handwritten digits recognition (MLP) Handwritten Digits Recognition (MLP) Launch demo Open in Binder Open in Colab MLP MNIST
Handwritten sketch recognition (MLP) Handwritten Sketch Recognition (MLP) Launch demo Open in Binder Open in Colab MLP QuickDraw

Convolutional Neural Networks (CNN)

A convolutional neural network (CNN, or ConvNet) is a class of deep neural networks, most commonly applied to analyzing visual imagery (photos, videos). They are used for detecting and classifying objects on photos and videos, style transfer, face recognition, pose estimation etc.

Experiment Model demo & training Tags Dataset
Handwritten digits recognition (CNN) Handwritten Digits Recognition (CNN) Launch demo Open in Binder Open in Colab CNN MNIST
Handwritten sketch recognition (CNN) Handwritten Sketch Recognition (CNN) Launch demo Open in Binder Open in Colab CNN QuickDraw
Rock Paper Scissors Rock Paper Scissors (CNN) Launch demo Open in Binder Open in Colab CNN RPS
Rock Paper Scissors Rock Paper Scissors (MobilenetV2) Launch demo Open in Binder Open in Colab MobileNetV2, Transfer learning, CNN RPS , ImageNet
Objects detection Objects Detection (MobileNetV2) Launch demo Open in Binder Open in Colab MobileNetV2, SSDLite, CNN COCO
Objects detection Image Classification (MobileNetV2) Launch demo Open in Binder Open in Colab MobileNetV2, CNN ImageNet

Recurrent Neural Networks (RNN)

A recurrent neural network (RNN) is a class of deep neural networks, most commonly applied to sequence-based data like speech, voice, text or music. They are used for machine translation, speech recognition, voice synthesis etc.

Experiment Model demo & training Tags Dataset
Numbers summation (RNN) Numbers Summation (RNN) Launch demo Open in Binder Open in Colab LSTM, Sequence-to-sequence Auto-generated
Shakespeare Text Generation (RNN) Shakespeare Text Generation (RNN) Launch demo Open in Binder Open in Colab LSTM, Character-based RNN Shakespeare
Wikipedia Text Generation (RNN) Wikipedia Text Generation (RNN) Launch demo Open in Binder Open in Colab LSTM, Character-based RNN Wikipedia
Recipe Generation (RNN) Recipe Generation (RNN) Launch demo Open in Binder Open in Colab LSTM, Character-based RNN Recipe box

Unsupervised Machine Learning

Unsupervised learning is when you only have input data X and no corresponding output variables. The goal for unsupervised learning is to model the underlying structure or distribution in the data in order to learn more about the data. These are called unsupervised learning because unlike supervised learning above there is no correct answers and there is no teacher. Algorithms are left to their own to discover and present the interesting structure in the data.

Generative Adversarial Networks (GANs)

A generative adversarial network (GAN) is a class of machine learning frameworks where two neural networks contest with each other in a game. Two models are trained simultaneously by an adversarial process. For example a generator ("the artist") learns to create images that look real, while a discriminator ("the art critic") learns to tell real images apart from fakes.

Experiment Model demo & training Tags Dataset
Clothes Generation (DCGAN) Clothes Generation (DCGAN) Launch demo Open in Binder Open in Colab DCGAN Fashion MNIST

How to use this repository locally

Setup virtual environment for Experiments

# Create "experiments" environment (from the project root folder).
python3 -m venv .virtualenvs/experiments

# Activate environment.
source .virtualenvs/experiments/bin/activate
# or if you use Fish...
source .virtualenvs/experiments/bin/activate.fish

To quit an environment run deactivate.

Install dependencies

# Upgrade pip and setuptools to the latest versions.
pip install --upgrade pip setuptools

# Install packages
pip install -r requirements.txt

To install new packages run pip install package-name. To add new packages to the requirements run pip freeze > requirements.txt.

Launch Jupyter locally

In order to play around with Jupyter notebooks and see how models were trained you need to launch a Jupyter Notebook server.

# Launch Jupyter server.
jupyter notebook

Jupyter will be available locally at http://localhost:8888/. Notebooks with experiments may be found in experiments folder.

Launch demos locally

Demo application is made on React by means of create-react-app.

# Switch to demos folder from project root.
cd demos

# Install all dependencies.
yarn install

# Start demo server on http. 
yarn start

# Or start demo server on https (for camera access in browser to work on localhost).
yarn start-https

Demos will be available locally at http://localhost:3000/ or at https://localhost:3000/.

Convert models

The converter environment is used to convert the models that were trained during the experiments from .h5 Keras format to Javascript understandable formats (tfjs_layers_model or tfjs_graph_model formats with .json and .bin files) for further usage with TensorFlow.js in Demo application.

# Create "converter" environment (from the project root folder).
python3 -m venv .virtualenvs/converter

# Activate "converter" environment.
source .virtualenvs/converter/bin/activate
# or if you use Fish...
source .virtualenvs/converter/bin/activate.fish

# Install converter requirements.
pip install -r requirements.converter.txt

The conversion of keras models to tfjs_layers_model/tfjs_graph_model formats is done by tfjs-converter:

For example:

tensorflowjs_converter --input_format keras \
  ./experiments/digits_recognition_mlp/digits_recognition_mlp.h5 \
  ./demos/public/models/digits_recognition_mlp

⚠️ Converting the models to JS understandable formats and loading them to the browser directly might not be a good practice since in this case the user might need to load tens or hundreds of megabytes of data to the browser which is not efficient. Normally the model is being served from the back-end (i.e. TensorFlow Extended) and instead of loading it all to the browser the user will do a lightweight HTTP request to do a prediction. But since the Demo App is just an experiment and not a production-ready app and for the sake of simplicity (to avoid having an up and running back-end) we're converting the models to JS understandable formats and loading them directly into the browser.

Requirements

Recommended versions:

  • Python: > 3.7.3.
  • Node: >= 12.4.0.
  • Yarn: >= 1.13.0.

In case if you have Python version 3.7.3 you might experience RuntimeError: dictionary changed size during iteration error when trying to import tensorflow (see the issue).

You might also be interested in

Articles

Supporting the project

You may support this project via ❤️ GitHub or ❤️ Patreon.

Owner
Oleksii Trekhleb
Sr Software Engineer at @uber
Oleksii Trekhleb
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning

The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I

MLJAR 2.4k Jan 02, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023