WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

Overview

WAGMA-SGD

WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging. The key idea of WAGMA-SGD is to use a novel wait-avoiding group allreduce to average the models among processes. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can be initiated without requiring that all the processes enter it. Thus, it can better handle the deep learning training with load imbalance. Since WAGMA-SGD only reduces the data within non-overlapping groups of process, it significantly improves the parallel scalability. WAGMA-SGD may bring staleness to the weights. However, the staleness is bounded. WAGMA-SGD is based on model averaging, rather than gradient averaging. Therefore, after the periodic synchronization is conducted, it guarantees a consistent model view amoung processes.

Demo

The wait-avoiding group allreduce operation is implemented in ./WAGMA-SGD-modules/fflib3/. To use it, simply configure and compile fflib3 as to an .so library by conducting cmake .. and make in the directory ./WAGMA-SGD-modules/fflib3/lib/. A script to run WAGMA-SGD on ResNet-50/ImageNet with SLURM job scheduler can be found here. Generally, to evaluate other neural network models with the customized optimizers (e.g., wait-avoiding group allreduce), one can simply wrap the default optimizer using the customized optimizers. See the example for ResNet-50 here.

For the deep learning tasks implemented in TensorFlow, we implemented custom C++ operators, in which we may call the wait-avoiding group allreduce operation or other communication operations (according to the specific parallel SGD algorithm) to average the models. Next, we register the C++ operators to TensorFlow, which can then be used to build the TensorFlow computational graph to implement the SGD algorithms. Similarly, for the deep learning tasks implemented in PyTorch, one can utilize pybind11 to call C++ operators in Python.

Publication

The work of WAGMA-SGD is pulished in TPDS'21. See the paper for details. To cite our work:

@ARTICLE{9271898,
  author={Li, Shigang and Ben-Nun, Tal and Nadiradze, Giorgi and Girolamo, Salvatore Di and Dryden, Nikoli and Alistarh, Dan and Hoefler, Torsten},
  journal={IEEE Transactions on Parallel and Distributed Systems},
  title={Breaking (Global) Barriers in Parallel Stochastic Optimization With Wait-Avoiding Group Averaging},
  year={2021},
  volume={32},
  number={7},
  pages={1725-1739},
  doi={10.1109/TPDS.2020.3040606}}

License

See LICENSE.

Owner
Shigang Li
Shigang Li
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022