Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Overview

AutoML in Healthcare Review

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Selected highlights from the 2020 AutoML Review [https://doi.org/10.1016/j.artmed.2020.101822] that reviewed over 2,160 works related to the field of automated machine learning.

The curated list of automated feature engineering tools for Automated Machine Learning

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0005

Method Work Feature Engineering Technique Used by how many works
Deep Feature Synthesis LINK Expand-Reduce 151
Explore Kit LINK Expand-Reduce 53
One Button Machine LINK Expand-Reduce 32
AutoLearn LINK Expand-Reduce 16
GP Feature Construction LINK Genetic Programming 68
Cognito LINK Hierarchical Greedy Search 38
RLFE LINK Reinforcement Learning 21
LFE LINK Meta-Learning 34

Automated machine learning pipeline optimizers

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0010

Method Work Optimization Algorithm Data Pre-Processing Feature Engineering Model Selection Hyperparameter Optimization Ensemble Learning Meta-Learning Used by how many works
Auto-Weka LINK Bayesian Optimization (SMAC) ✔️ ✔️ ✔️ 703
Auto-Sklearn LINK Joint Bayesian Optimization and Bandit Search (BOHB) ✔️ ✔️ ✔️ ✔️ ✔️ 542
TPOT LINK Evolutionary Algorithm ✔️ ✔️ ✔️ ✔️ 84
TuPAQ LINK Bandit Search ✔️ ✔️ 94
ATM LINK Joint Bayesian Optimization and Bandit Search ✔️ ✔️ ✔️ 29
Automatic Frankensteining LINK Bayesian Optimization ✔️ ✔️ ✔️ 12
ML-Plan LINK Hierarchical Task Networks (HTN) ✔️ ✔️ ✔️ 24
Autostacker LINK Evolutionary Algorithm ✔️ ✔️ ✔️ 18
AlphaD3M LINK Reinforcement Learning/Monte Carlo Tree Search ✔️ ✔️ ✔️ 8
Collaborative Filtering LINK Probabilistic Matrix Factorization ✔️ ✔️ ✔️ ✔️ 29

Neural Architecture Search algorithms, based on performance on the CIFAR-10 dataset

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0015

NAS Algorithm Work Search Space Search Strategy Performance Estimation Strategy Number of Parameters Search Time (GPU-days) Test Error (%)
Large-scale Evolution LINK Feed-Forward Networks Evolutionary Algorithm Naive Training and Validation 5.4M 2600 5.4
EAS LINK Feed-Forward Networks Reinforcement Learning and Network Morphism Short Training and Validation 23.4M 10 4.23
Hierarchical Evolution LINK Cell Motifs Evolutionary Algorithm Training and Validation on proposed CNN Cell 15.7M 300 3.75
NAS v3 LINK Multi-branched Networks Reinforcement Learning Naive Training and Validation 37.4M 22400 3.65
PNAS LINK Cell Motifs Sequential Model-Based Optimization (SMBO) Performance Prediction 3.2M 225 3.41
ENAS LINK Cell Motifs Reinforcement Learning One Shot 4.6M 0.45 2.89
ResNet + Regularization LINK HUMAN BASELINE HUMAN BASELINE HUMAN BASELINE 26.2M - 2.86
DARTS LINK Cell Motifs Gradient-Based Optimization Training and Validation on proposed CNN Cell 3.4M 4 2.83
NASNet-A LINK Cell Motifs Reinforcement Learning Naive Training and Validation 3.3M 2000 2.65
EENA LINK Cell Motifs Evolutionary Algorithm Performance Prediction 8.5M 0.65 2.56
Path-Level EAS LINK Cell Motifs Reinforcement Learning Short Training and Validation 14.3M 200 2.30
NAO LINK Cell Motifs Gradient-Based Optimization Performance Prediction 128M 200 2.11
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022