Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Overview

AutoML in Healthcare Review

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Selected highlights from the 2020 AutoML Review [https://doi.org/10.1016/j.artmed.2020.101822] that reviewed over 2,160 works related to the field of automated machine learning.

The curated list of automated feature engineering tools for Automated Machine Learning

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0005

Method Work Feature Engineering Technique Used by how many works
Deep Feature Synthesis LINK Expand-Reduce 151
Explore Kit LINK Expand-Reduce 53
One Button Machine LINK Expand-Reduce 32
AutoLearn LINK Expand-Reduce 16
GP Feature Construction LINK Genetic Programming 68
Cognito LINK Hierarchical Greedy Search 38
RLFE LINK Reinforcement Learning 21
LFE LINK Meta-Learning 34

Automated machine learning pipeline optimizers

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0010

Method Work Optimization Algorithm Data Pre-Processing Feature Engineering Model Selection Hyperparameter Optimization Ensemble Learning Meta-Learning Used by how many works
Auto-Weka LINK Bayesian Optimization (SMAC) ✔️ ✔️ ✔️ 703
Auto-Sklearn LINK Joint Bayesian Optimization and Bandit Search (BOHB) ✔️ ✔️ ✔️ ✔️ ✔️ 542
TPOT LINK Evolutionary Algorithm ✔️ ✔️ ✔️ ✔️ 84
TuPAQ LINK Bandit Search ✔️ ✔️ 94
ATM LINK Joint Bayesian Optimization and Bandit Search ✔️ ✔️ ✔️ 29
Automatic Frankensteining LINK Bayesian Optimization ✔️ ✔️ ✔️ 12
ML-Plan LINK Hierarchical Task Networks (HTN) ✔️ ✔️ ✔️ 24
Autostacker LINK Evolutionary Algorithm ✔️ ✔️ ✔️ 18
AlphaD3M LINK Reinforcement Learning/Monte Carlo Tree Search ✔️ ✔️ ✔️ 8
Collaborative Filtering LINK Probabilistic Matrix Factorization ✔️ ✔️ ✔️ ✔️ 29

Neural Architecture Search algorithms, based on performance on the CIFAR-10 dataset

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0015

NAS Algorithm Work Search Space Search Strategy Performance Estimation Strategy Number of Parameters Search Time (GPU-days) Test Error (%)
Large-scale Evolution LINK Feed-Forward Networks Evolutionary Algorithm Naive Training and Validation 5.4M 2600 5.4
EAS LINK Feed-Forward Networks Reinforcement Learning and Network Morphism Short Training and Validation 23.4M 10 4.23
Hierarchical Evolution LINK Cell Motifs Evolutionary Algorithm Training and Validation on proposed CNN Cell 15.7M 300 3.75
NAS v3 LINK Multi-branched Networks Reinforcement Learning Naive Training and Validation 37.4M 22400 3.65
PNAS LINK Cell Motifs Sequential Model-Based Optimization (SMBO) Performance Prediction 3.2M 225 3.41
ENAS LINK Cell Motifs Reinforcement Learning One Shot 4.6M 0.45 2.89
ResNet + Regularization LINK HUMAN BASELINE HUMAN BASELINE HUMAN BASELINE 26.2M - 2.86
DARTS LINK Cell Motifs Gradient-Based Optimization Training and Validation on proposed CNN Cell 3.4M 4 2.83
NASNet-A LINK Cell Motifs Reinforcement Learning Naive Training and Validation 3.3M 2000 2.65
EENA LINK Cell Motifs Evolutionary Algorithm Performance Prediction 8.5M 0.65 2.56
Path-Level EAS LINK Cell Motifs Reinforcement Learning Short Training and Validation 14.3M 200 2.30
NAO LINK Cell Motifs Gradient-Based Optimization Performance Prediction 128M 200 2.11
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Tom Weichle 2 Apr 18, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023