A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Overview

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and Kafka.

All Spark examples provided in this PySpark (Spark with Python) tutorial is basic, simple, and easy to practice for beginners who are enthusiastic to learn PySpark and advance their career in BigData and Machine Learning.

Features of PySpark

    In-memory computation
    Distributed processing using parallelize
    Can be used with many cluster managers (Spark, Yarn, Mesos e.t.c)
    Fault-tolerant
    Immutable
    Lazy evaluation
    Cache & persistence
    Inbuild-optimization when using DataFrames
    Supports ANSI SQL

PySpark Quick Reference

A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Read CSV file into DataFrame with schema and delimited as comma


df = spark.read.option(header='True', inferSchema='True',delimiter=',').csv("/tmp/resources/sales.csv")

Easily reference these as F.func() and T.type()

from pyspark.sql import functions as F, types as T

Common Operation

### Filter on equals condition

df = df.filter(df.is_adult == 'Y')

### Filter on >, <, >=, <= condition

df = df.filter(df.age > 25)

### Sort results

df = df.orderBy(df.age.asc()))  
df = df.orderBy(df.age.desc()))


### Multiple conditions require parentheses around each condition

df = df.filter((df.age > 25) & (df.is_adult == 'Y'))


### Compare against a list of allowed values

df = df.filter(col('age').isin([3, 4, 7]))

Joins

### Left join in another dataset

df = df.join(person_lookup_table, 'person_id', 'left')

### Match on different columns in left & right datasets
df = df.join(other_table, df.id == other_table.person_id, 'left')

### Match on multiple columns
df = df.join(other_table, ['first_name', 'last_name'], 'left')

### Useful for one-liner lookup code joins if you have a bunch
def lookup_and_replace(df1, df2, df1_key, df2_key, df2_value):
    return (
        df1
        .join(df2[[df2_key, df2_value]], df1[df1_key] == df2[df2_key], 'left')
        .withColumn(df1_key, F.coalesce(F.col(df2_value), F.col(df1_key)))
        .drop(df2_key)
        .drop(df2_value)
    )

df = lookup_and_replace(people, pay_codes, id, pay_code_id, pay_code_desc)

Column Operations

# Add a new static column
df = df.withColumn('status', F.lit('PASS'))

# Construct a new dynamic column
df = df.withColumn('full_name', F.when(
    (df.fname.isNotNull() & df.lname.isNotNull()), F.concat(df.fname, df.lname)
).otherwise(F.lit('N/A'))

# Pick which columns to keep, optionally rename some
df = df.select(
    'name',
    'age',
    F.col('dob').alias('date_of_birth'),
)

Casting & Coalescing Null Values & Duplicates

# Cast a column to a different type
df = df.withColumn('price', df.price.cast(T.DoubleType()))

# Replace all nulls with a specific value
df = df.fillna({
    'first_name': 'Sundar',
    'age': 18,
})

# Take the first value that is not null
df = df.withColumn('last_name', F.coalesce(df.last_name, df.surname, F.lit('N/A')))

# Drop duplicate rows in a dataset (distinct)
df = df.dropDuplicates()

# Drop duplicate rows, but consider only specific columns
df = df.dropDuplicates(['name', 'height'])

# Replace empty strings with null (leave out subset keyword arg to replace in all columns)
df = df.replace({"": None}, subset=["name"])

# Convert Python/PySpark/NumPy NaN operator to null
df = df.replace(float("nan"), None)


# Remove columns
df = df.drop('mod_dt', 'mod_username')

# Rename a column
df = df.withColumnRenamed('dob', 'date_of_birth')

# Keep all the columns which also occur in another dataset
df = df.select(*(F.col(c) for c in df2.columns))

# Batch Rename/Clean Columns
for col in df.columns:
    df = df.withColumnRenamed(col, col.lower().replace(' ', '_').replace('-', '_'))

String Operations

String Filters

# Contains - col.contains(string)
df = df.filter(df.name.contains('o'))

# Starts With - col.startswith(string)
df = df.filter(df.name.startswith('Al'))

# Ends With - col.endswith(string)
df = df.filter(df.name.endswith('ice'))

# Is Null - col.isNull()
df = df.filter(df.is_adult.isNull())

# Is Not Null - col.isNotNull()
df = df.filter(df.first_name.isNotNull())

# Like - col.like(string_with_sql_wildcards)
df = df.filter(df.name.like('Al%'))

# Regex Like - col.rlike(regex)
df = df.filter(df.name.rlike('[A-Z]*ice$'))

# Is In List - col.isin(*cols)
df = df.filter(df.name.isin('Bob', 'Mike'))

String Functions

# Substring - col.substr(startPos, length)
df = df.withColumn('short_id', df.id.substr(0, 10))

# Trim - F.trim(col)
df = df.withColumn('name', F.trim(df.name))

# Left Pad - F.lpad(col, len, pad)
# Right Pad - F.rpad(col, len, pad)
df = df.withColumn('id', F.lpad('id', 4, '0'))

# Left Trim - F.ltrim(col)
# Right Trim - F.rtrim(col)
df = df.withColumn('id', F.ltrim('id'))

# Concatenate - F.concat(*cols)
df = df.withColumn('full_name', F.concat('fname', F.lit(' '), 'lname'))

# Concatenate with Separator/Delimiter - F.concat_ws(delimiter, *cols)
df = df.withColumn('full_name', F.concat_ws('-', 'fname', 'lname'))

# Regex Replace - F.regexp_replace(str, pattern, replacement)[source]
df = df.withColumn('id', F.regexp_replace(id, '0F1(.*)', '1F1-$1'))

# Regex Extract - F.regexp_extract(str, pattern, idx)
df = df.withColumn('id', F.regexp_extract(id, '[0-9]*', 0))

Number Operations

# Round - F.round(col, scale=0)
df = df.withColumn('price', F.round('price', 0))

# Floor - F.floor(col)
df = df.withColumn('price', F.floor('price'))

# Ceiling - F.ceil(col)
df = df.withColumn('price', F.ceil('price'))

# Absolute Value - F.abs(col)
df = df.withColumn('price', F.abs('price'))

# X raised to power Y – F.pow(x, y)
df = df.withColumn('exponential_growth', F.pow('x', 'y'))

# Select smallest value out of multiple columns – F.least(*cols)
df = df.withColumn('least', F.least('subtotal', 'total'))

# Select largest value out of multiple columns – F.greatest(*cols)
df = df.withColumn('greatest', F.greatest('subtotal', 'total'))

Date & Timestamp Operations

# Convert a string of known format to a date (excludes time information)
df = df.withColumn('date_of_birth', F.to_date('date_of_birth', 'yyyy-MM-dd'))

# Convert a string of known format to a timestamp (includes time information)
df = df.withColumn('time_of_birth', F.to_timestamp('time_of_birth', 'yyyy-MM-dd HH:mm:ss'))

# Get year from date:       F.year(col)
# Get month from date:      F.month(col)
# Get day from date:        F.dayofmonth(col)
# Get hour from date:       F.hour(col)
# Get minute from date:     F.minute(col)
# Get second from date:     F.second(col)
df = df.filter(F.year('date_of_birth') == F.lit('2017'))

# Add & subtract days
df = df.withColumn('three_days_after', F.date_add('date_of_birth', 3))
df = df.withColumn('three_days_before', F.date_sub('date_of_birth', 3))

# Add & Subtract months
df = df.withColumn('next_month', F.add_month('date_of_birth', 1))

# Get number of days between two dates
df = df.withColumn('days_between', F.datediff('start', 'end'))

# Get number of months between two dates
df = df.withColumn('months_between', F.months_between('start', 'end'))

# Keep only rows where date_of_birth is between 2017-05-10 and 2018-07-21
df = df.filter(
    (F.col('date_of_birth') >= F.lit('2017-05-10')) &
    (F.col('date_of_birth') <= F.lit('2018-07-21'))
)

Array Operations

# Column Array - F.array(*cols)
df = df.withColumn('full_name', F.array('fname', 'lname'))

# Empty Array - F.array(*cols)
df = df.withColumn('empty_array_column', F.array([]))

# Array Size/Length – F.size(col)
df = df.withColumn('array_length', F.size(F.col('my_array')))

Aggregation Operations

# Row Count:                F.count()
# Sum of Rows in Group:     F.sum(*cols)
# Mean of Rows in Group:    F.mean(*cols)
# Max of Rows in Group:     F.max(*cols)
# Min of Rows in Group:     F.min(*cols)
# First Row in Group:       F.alias(*cols)
df = df.groupBy('gender').agg(F.max('age').alias('max_age_by_gender'))

# Collect a Set of all Rows in Group:       F.collect_set(col)
# Collect a List of all Rows in Group:      F.collect_list(col)
df = df.groupBy('age').agg(F.collect_set('name').alias('person_names'))

# Just take the lastest row for each combination (Window Functions)
from pyspark.sql import Window as W

window = W.partitionBy("first_name", "last_name").orderBy(F.desc("date"))
df = df.withColumn("row_number", F.row_number().over(window))
df = df.filter(F.col("row_number") == 1)
df = df.drop("row_number")

Advanced Operations

Repartitioning

# Repartition – df.repartition(num_output_partitions)
df = df.repartition(1)

UDFs (User Defined Functions)

# Multiply each row's age column by two
times_two_udf = F.udf(lambda x: x * 2)
df = df.withColumn('age', times_two_udf(df.age))

# Randomly choose a value to use as a row's name
import random

random_name_udf = F.udf(lambda: random.choice(['Bob', 'Tom', 'Amy', 'Jenna']))
df = df.withColumn('name', random_name_udf())

Window Functions

Window Functions Usage & Syntax PySpark Window Functions description
row_number(): Column Returns a sequential number starting from 1 within a window partition
rank(): Column Returns the rank of rows within a window partition, with gaps.
percent_rank(): Column Returns the percentile rank of rows within a window partition.
dense_rank(): Column Returns the rank of rows within a window partition without any gaps. Where as Rank() returns rank with gaps.
ntile(n: Int): Column Returns the ntile id in a window partition
cume_dist(): Column Returns the cumulative distribution of values within a window partition
lag(e: Column, offset: Int): Column
lag(columnName: String, offset: Int): Column
lag(columnName: String, offset: Int, defaultValue: Any): Column
returns the value that is `offset` rows before the current row, and `null` if there is less than `offset` rows before the current row.
lead(columnName: String, offset: Int): Column
lead(columnName: String, offset: Int): Column
lead(columnName: String, offset: Int, defaultValue: Any): Column
returns the value that is `offset` rows after the current row, and `null` if there is less than `offset` rows after the current row.

row_number Window Function


from pyspark.sql.window import Window
from pyspark.sql.functions import row_number
windowSpec  = Window.partitionBy("department").orderBy("salary")

df.withColumn("row_number",row_number().over(windowSpec)) \
    .show(truncate=False)
Owner
Sundar Ramamurthy
Sundar Ramamurthy
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022