A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Overview

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and Kafka.

All Spark examples provided in this PySpark (Spark with Python) tutorial is basic, simple, and easy to practice for beginners who are enthusiastic to learn PySpark and advance their career in BigData and Machine Learning.

Features of PySpark

    In-memory computation
    Distributed processing using parallelize
    Can be used with many cluster managers (Spark, Yarn, Mesos e.t.c)
    Fault-tolerant
    Immutable
    Lazy evaluation
    Cache & persistence
    Inbuild-optimization when using DataFrames
    Supports ANSI SQL

PySpark Quick Reference

A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Read CSV file into DataFrame with schema and delimited as comma


df = spark.read.option(header='True', inferSchema='True',delimiter=',').csv("/tmp/resources/sales.csv")

Easily reference these as F.func() and T.type()

from pyspark.sql import functions as F, types as T

Common Operation

### Filter on equals condition

df = df.filter(df.is_adult == 'Y')

### Filter on >, <, >=, <= condition

df = df.filter(df.age > 25)

### Sort results

df = df.orderBy(df.age.asc()))  
df = df.orderBy(df.age.desc()))


### Multiple conditions require parentheses around each condition

df = df.filter((df.age > 25) & (df.is_adult == 'Y'))


### Compare against a list of allowed values

df = df.filter(col('age').isin([3, 4, 7]))

Joins

### Left join in another dataset

df = df.join(person_lookup_table, 'person_id', 'left')

### Match on different columns in left & right datasets
df = df.join(other_table, df.id == other_table.person_id, 'left')

### Match on multiple columns
df = df.join(other_table, ['first_name', 'last_name'], 'left')

### Useful for one-liner lookup code joins if you have a bunch
def lookup_and_replace(df1, df2, df1_key, df2_key, df2_value):
    return (
        df1
        .join(df2[[df2_key, df2_value]], df1[df1_key] == df2[df2_key], 'left')
        .withColumn(df1_key, F.coalesce(F.col(df2_value), F.col(df1_key)))
        .drop(df2_key)
        .drop(df2_value)
    )

df = lookup_and_replace(people, pay_codes, id, pay_code_id, pay_code_desc)

Column Operations

# Add a new static column
df = df.withColumn('status', F.lit('PASS'))

# Construct a new dynamic column
df = df.withColumn('full_name', F.when(
    (df.fname.isNotNull() & df.lname.isNotNull()), F.concat(df.fname, df.lname)
).otherwise(F.lit('N/A'))

# Pick which columns to keep, optionally rename some
df = df.select(
    'name',
    'age',
    F.col('dob').alias('date_of_birth'),
)

Casting & Coalescing Null Values & Duplicates

# Cast a column to a different type
df = df.withColumn('price', df.price.cast(T.DoubleType()))

# Replace all nulls with a specific value
df = df.fillna({
    'first_name': 'Sundar',
    'age': 18,
})

# Take the first value that is not null
df = df.withColumn('last_name', F.coalesce(df.last_name, df.surname, F.lit('N/A')))

# Drop duplicate rows in a dataset (distinct)
df = df.dropDuplicates()

# Drop duplicate rows, but consider only specific columns
df = df.dropDuplicates(['name', 'height'])

# Replace empty strings with null (leave out subset keyword arg to replace in all columns)
df = df.replace({"": None}, subset=["name"])

# Convert Python/PySpark/NumPy NaN operator to null
df = df.replace(float("nan"), None)


# Remove columns
df = df.drop('mod_dt', 'mod_username')

# Rename a column
df = df.withColumnRenamed('dob', 'date_of_birth')

# Keep all the columns which also occur in another dataset
df = df.select(*(F.col(c) for c in df2.columns))

# Batch Rename/Clean Columns
for col in df.columns:
    df = df.withColumnRenamed(col, col.lower().replace(' ', '_').replace('-', '_'))

String Operations

String Filters

# Contains - col.contains(string)
df = df.filter(df.name.contains('o'))

# Starts With - col.startswith(string)
df = df.filter(df.name.startswith('Al'))

# Ends With - col.endswith(string)
df = df.filter(df.name.endswith('ice'))

# Is Null - col.isNull()
df = df.filter(df.is_adult.isNull())

# Is Not Null - col.isNotNull()
df = df.filter(df.first_name.isNotNull())

# Like - col.like(string_with_sql_wildcards)
df = df.filter(df.name.like('Al%'))

# Regex Like - col.rlike(regex)
df = df.filter(df.name.rlike('[A-Z]*ice$'))

# Is In List - col.isin(*cols)
df = df.filter(df.name.isin('Bob', 'Mike'))

String Functions

# Substring - col.substr(startPos, length)
df = df.withColumn('short_id', df.id.substr(0, 10))

# Trim - F.trim(col)
df = df.withColumn('name', F.trim(df.name))

# Left Pad - F.lpad(col, len, pad)
# Right Pad - F.rpad(col, len, pad)
df = df.withColumn('id', F.lpad('id', 4, '0'))

# Left Trim - F.ltrim(col)
# Right Trim - F.rtrim(col)
df = df.withColumn('id', F.ltrim('id'))

# Concatenate - F.concat(*cols)
df = df.withColumn('full_name', F.concat('fname', F.lit(' '), 'lname'))

# Concatenate with Separator/Delimiter - F.concat_ws(delimiter, *cols)
df = df.withColumn('full_name', F.concat_ws('-', 'fname', 'lname'))

# Regex Replace - F.regexp_replace(str, pattern, replacement)[source]
df = df.withColumn('id', F.regexp_replace(id, '0F1(.*)', '1F1-$1'))

# Regex Extract - F.regexp_extract(str, pattern, idx)
df = df.withColumn('id', F.regexp_extract(id, '[0-9]*', 0))

Number Operations

# Round - F.round(col, scale=0)
df = df.withColumn('price', F.round('price', 0))

# Floor - F.floor(col)
df = df.withColumn('price', F.floor('price'))

# Ceiling - F.ceil(col)
df = df.withColumn('price', F.ceil('price'))

# Absolute Value - F.abs(col)
df = df.withColumn('price', F.abs('price'))

# X raised to power Y – F.pow(x, y)
df = df.withColumn('exponential_growth', F.pow('x', 'y'))

# Select smallest value out of multiple columns – F.least(*cols)
df = df.withColumn('least', F.least('subtotal', 'total'))

# Select largest value out of multiple columns – F.greatest(*cols)
df = df.withColumn('greatest', F.greatest('subtotal', 'total'))

Date & Timestamp Operations

# Convert a string of known format to a date (excludes time information)
df = df.withColumn('date_of_birth', F.to_date('date_of_birth', 'yyyy-MM-dd'))

# Convert a string of known format to a timestamp (includes time information)
df = df.withColumn('time_of_birth', F.to_timestamp('time_of_birth', 'yyyy-MM-dd HH:mm:ss'))

# Get year from date:       F.year(col)
# Get month from date:      F.month(col)
# Get day from date:        F.dayofmonth(col)
# Get hour from date:       F.hour(col)
# Get minute from date:     F.minute(col)
# Get second from date:     F.second(col)
df = df.filter(F.year('date_of_birth') == F.lit('2017'))

# Add & subtract days
df = df.withColumn('three_days_after', F.date_add('date_of_birth', 3))
df = df.withColumn('three_days_before', F.date_sub('date_of_birth', 3))

# Add & Subtract months
df = df.withColumn('next_month', F.add_month('date_of_birth', 1))

# Get number of days between two dates
df = df.withColumn('days_between', F.datediff('start', 'end'))

# Get number of months between two dates
df = df.withColumn('months_between', F.months_between('start', 'end'))

# Keep only rows where date_of_birth is between 2017-05-10 and 2018-07-21
df = df.filter(
    (F.col('date_of_birth') >= F.lit('2017-05-10')) &
    (F.col('date_of_birth') <= F.lit('2018-07-21'))
)

Array Operations

# Column Array - F.array(*cols)
df = df.withColumn('full_name', F.array('fname', 'lname'))

# Empty Array - F.array(*cols)
df = df.withColumn('empty_array_column', F.array([]))

# Array Size/Length – F.size(col)
df = df.withColumn('array_length', F.size(F.col('my_array')))

Aggregation Operations

# Row Count:                F.count()
# Sum of Rows in Group:     F.sum(*cols)
# Mean of Rows in Group:    F.mean(*cols)
# Max of Rows in Group:     F.max(*cols)
# Min of Rows in Group:     F.min(*cols)
# First Row in Group:       F.alias(*cols)
df = df.groupBy('gender').agg(F.max('age').alias('max_age_by_gender'))

# Collect a Set of all Rows in Group:       F.collect_set(col)
# Collect a List of all Rows in Group:      F.collect_list(col)
df = df.groupBy('age').agg(F.collect_set('name').alias('person_names'))

# Just take the lastest row for each combination (Window Functions)
from pyspark.sql import Window as W

window = W.partitionBy("first_name", "last_name").orderBy(F.desc("date"))
df = df.withColumn("row_number", F.row_number().over(window))
df = df.filter(F.col("row_number") == 1)
df = df.drop("row_number")

Advanced Operations

Repartitioning

# Repartition – df.repartition(num_output_partitions)
df = df.repartition(1)

UDFs (User Defined Functions)

# Multiply each row's age column by two
times_two_udf = F.udf(lambda x: x * 2)
df = df.withColumn('age', times_two_udf(df.age))

# Randomly choose a value to use as a row's name
import random

random_name_udf = F.udf(lambda: random.choice(['Bob', 'Tom', 'Amy', 'Jenna']))
df = df.withColumn('name', random_name_udf())

Window Functions

Window Functions Usage & Syntax PySpark Window Functions description
row_number(): Column Returns a sequential number starting from 1 within a window partition
rank(): Column Returns the rank of rows within a window partition, with gaps.
percent_rank(): Column Returns the percentile rank of rows within a window partition.
dense_rank(): Column Returns the rank of rows within a window partition without any gaps. Where as Rank() returns rank with gaps.
ntile(n: Int): Column Returns the ntile id in a window partition
cume_dist(): Column Returns the cumulative distribution of values within a window partition
lag(e: Column, offset: Int): Column
lag(columnName: String, offset: Int): Column
lag(columnName: String, offset: Int, defaultValue: Any): Column
returns the value that is `offset` rows before the current row, and `null` if there is less than `offset` rows before the current row.
lead(columnName: String, offset: Int): Column
lead(columnName: String, offset: Int): Column
lead(columnName: String, offset: Int, defaultValue: Any): Column
returns the value that is `offset` rows after the current row, and `null` if there is less than `offset` rows after the current row.

row_number Window Function


from pyspark.sql.window import Window
from pyspark.sql.functions import row_number
windowSpec  = Window.partitionBy("department").orderBy("salary")

df.withColumn("row_number",row_number().over(windowSpec)) \
    .show(truncate=False)
Owner
Sundar Ramamurthy
Sundar Ramamurthy
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023