A library to generate synthetic time series data by easy-to-use factors and generator

Overview

timeseries-generator

This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_generator) and demo notebooks on how to generate synthetic timeseries data (under /examples). The goal here is to have non-sensitive data available to demo solutions and test the effectiveness of those solutions and/or algorithms. In order to test your algorithm, you want to have time series available containing different kinds of trends. The python package should help create different kinds of time series while still being maintainable.

timeseries_generator package

For this package, it is assumed that a time series is composed of a base value multiplied by many factors.

ts = base_value * factor1 * factor2 * ... * factorN + Noiser

Diagram

These factors can be anything, random noise, linear trends, to seasonality. The factors can affect different features. For example, some features in your time series may have a seasonal component, while others do not.

Different factors are represented in different classes, which inherit from the BaseFactor class. Factor classes are input for the Generator class, which creates a dataframe containing the features, base value, all the different factors working on the base value and and the final factor and value.

Core concept

  • Generator: a python class to generate the time series. A generator contains a list of factors and noiser. By overlaying the factors and noiser, generator can produce a customized time series
  • Factor: a python class to generate the trend, seasonality, holiday factors, etc. Factors take effect by multiplying on the base value of the generator.
  • Noised: a python class to generate time series noise data. Noiser take effect by summing on top of "factorized" time series. This formula describes the concepts we talk above

Built-in Factors

  • LinearTrend: give a linear trend based on the input slope and intercept
  • CountryYearlyTrend: give a yearly-based market cap factor based on the GDP per - capita.
  • EUEcoTrendComponents: give a monthly changed factor based on EU industry product public data
  • HolidayTrendComponents: simulate the holiday sale peak. It adapts the holiday days - differently in different country
  • BlackFridaySaleComponents: simulate the BlackFriday sale event
  • WeekendTrendComponents: more sales at weekends than on weekdays
  • FeatureRandFactorComponents: set up different sale amount for different stores and different product
  • ProductSeasonTrendComponents: simulate season-sensitive product sales. In this example code, we have 3 different types of product:
    • winter jacket: inverse-proportional to the temperature, more sales in winter
    • basketball top: proportional to the temperature, more sales in summer
    • Yoga Mat: temperature insensitive

Installation

pip install timeseries-generator

Usage

from timeseries_generator import LinearTrend, Generator, WhiteNoise, RandomFeatureFactor
import pandas as pd

# setting up a linear tren
lt = LinearTrend(coef=2.0, offset=1., col_name="my_linear_trend")
g = Generator(factors={lt}, features=None, date_range=pd.date_range(start="01-01-2020", end="01-20-2020"))
g.generate()
g.plot()

# update by adding some white noise to the generator
wn = WhiteNoise(stdev_factor=0.05)
g.update_factor(wn)
g.generate()
g.plot()

Example Notebooks

We currently have 2 example notebooks available:

  1. generate_stationary_process: Good for introducing the basics of the timeseries_generator. Shows how to apply simple linear trends and how to introduce features and labels, as well as random noise.
  2. use_external_factors: Goes more into detail and shows how to use the external_factors submodule. Shows how to create seasonal trends.

Web based prototyping UI

We also use Streamlit to build a web-based UI to demonstrate how to use this package to generate synthesis time series data in an interactive web UI.

streamlit run examples/streamlit/app.py

Web UI

License

This package is released under the Apache License, Version 2.0

You might also like...
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Visualize classified time series data with interactive Sankey plots in Google Earth Engine
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing values.

A collection of Scikit-Learn compatible time series transformers and tools.
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Automatic extraction of relevant features from time series:
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

Probabilistic time series modeling in Python
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Comments
  • Time series data augmentation

    Time series data augmentation

    There is a code example that gives to increase the amount of series data by adding slightly modified copies of already existing time series data or newly created synthetic series data from existing data?

    opened by YAYAYru 0
  • KeyError: 'country'

    KeyError: 'country'

    From the following code,

    from timeseries_generator import HolidayFactor, LinearTrend, Generator
    
    lt = LinearTrend(coef=2.0, offset=1., col_name="my_linear_trend")
    
    g: Generator = Generator(factors={lt}, features=None, date_range=pd.date_range(start="01-01-2020", end="01-01-2021"))
    
    holiday_factor = HolidayFactor(
        country_feature_name="country",
    )
    g.add_factor(holiday_factor)
    g.generate()
    

    I get the error. I am not sure this is expected behavior.

    File /usr/local/Caskroom/miniconda/base/envs/tf/lib/python3.9/site-packages/pandas/core/frame.py:10083, in DataFrame.merge(self, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)
    ...
    -> 1849     raise KeyError(key)
       1851 # Check for duplicates
       1852 if values.ndim > 1:
    
    KeyError: 'country'
    
    opened by twobitunicorn 0
  • [Feature request] Customizable feature combinations

    [Feature request] Customizable feature combinations

    Hi team, Thanks for the useful library! I wonder if you'd be open to this idea:

    I would like to be able to:

    • Set up categorizing features (let's say, for illustration, CATEGORY=[footwear, t-shirts, socks], SIZE=[S, M, L, US-Mens-8, US-Womens-6) and define Factors on them
    • Generate time-series with more restricted feature combinations than the outer product (again for illustration, "t-shirt sizes for t-shirts, shoe sizes for footwear")

    Today, it seems like Generator.generate() hard-codes the assumption that time-series should be generated for the product of all provided feature values.

    It'd be helpful if, instead, we could have the option of customizing this join to limit down generated combinations?

    Some options I can think of:

    1. Leave the library as-is: Users generate full outer product and limit down what they want in post-processing
      • This seems possible already, but very RAM-intensive if your desired combinations are sparse?
    2. Accept an optional dataframe of factor combinations as parameter to the generate() method
      • Gives full flexibility over which combinations are kept / ignored, without assuming any particular rigid hierarchies between features
      • ...But might need to do a bit of validation to protect against user errors? May not be super easy to use without some documented examples / functions to generate the dataframe
    3. Some more complex API for feature configuration that accommodates specifying valid/invalid feature combinations
      • Might be nicer for usability, but difficult to make general: E.g. a straightforward hierarchy could be represented as a nested dict, but in practice many applications have multiple intersecting views of product category information e.g. brand, type, target segment, etc.
    opened by athewsey 1
  • Generate hourly data

    Generate hourly data

    First of all, thank you for making this repository public! I enjoy its ease of use and the built-in factors.

    Problem description

    I'm currently trying to generate revenue data for a bar/restaurant on an hourly basis. As far as I can see, the timeseries-generator only supports generating one data point per day, not per hour.

    I tried to generate hourly data like g = Generator(factors={lt}, features=None, date_range=pd.date_range(start='15/9/2021', end='30/9/2021', freq='h')) which didn't work.

    Potential solution

    Add the possibility to generate hourly data too. If this is a promising idea in your opinion, I'm willing to contribute to the implementation.

    Thank you in advance!

    opened by nileger 1
Releases(v0.1.0)
  • v0.1.0(Jul 20, 2021)

    • first release of time series generators, including:
      • base factor
      • linear trend factor
      • sinusoidal factor
      • white noise factor
      • random factor
      • holiday factor
      • weekday factor
      • country GDP factor
      • EU industry index factor
    • Examples
      • notebooks which includes some simple examples
      • streamlit dashboard
    Source code(tar.gz)
    Source code(zip)
Owner
Nike Inc.
Nike Inc.
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022