Timeseries analysis for neuroscience data

Overview
===================================================
 Nitime: timeseries analysis for neuroscience data
===================================================

Nitime contains a core of numerical algorithms for time-series analysis both in
the time and spectral domains, a set of container objects to represent
time-series, and auxiliary objects that expose a high level interface to the
numerical machinery and make common analysis tasks easy to express with compact
and semantically clear code.

Website
=======

Current information can always be found at the NIPY website is located
here::

    http://nipy.org/nitime

Mailing Lists
=============

Please see the developer's list here::

    http://mail.scipy.org/mailman/listinfo/nipy-devel

Code
====

You can find our sources and single-click downloads:

* `Main repository`_ on Github.
* Documentation_ for all releases and current development tree.
* Download as a tar/zip file the `current trunk`_.
* Downloads of all `available releases`_.

.. _main repository: http://github.com/nipy/nitime
.. _Documentation: http://nipy.org/nitime
.. _current trunk: http://github.com/nipy/nitime/archives/master
.. _available releases: http://github.com/nipy/nitime/downloads


License information
===================

Nitime is licensed under the terms of the new BSD license. See the file
"LICENSE" for information on the history of this software, terms & conditions
for usage, and a DISCLAIMER OF ALL WARRANTIES.

All trademarks referenced herein are property of their respective holders.

Copyright (c) 2006-2011, NIPY Developers
All rights reserved.
Comments
  • MIssing plots in granger_fmri.html

    MIssing plots in granger_fmri.html

    There might be something not right about the last two figures here

    http://nipy.org/nitime/examples/granger_fmri.html
    

    Those are missing the body of the graph, which is all white.

    I believe this is in the file doc/examples/granger_fmri.py.

    opened by justbennet 14
  • fail to estimate dpss_windows for long signals

    fail to estimate dpss_windows for long signals

    I have times series with 166800 samples (raw MEG data).

    alg.dpss_windows(166800, 4, 8)

    fails. However, in Matlab it works.

    any idea of how to fix this?

    opened by agramfort 14
  • Latest release breaking Python 2.7, 3.4 (SyntaxError)

    Latest release breaking Python 2.7, 3.4 (SyntaxError)

    In nipype, tests are breaking in Python 2.7, 3.4, due to the @ operator:

    ./../../virtualenv/python2.7.15/lib/python2.7/site-packages/py/_path/local.py:668: in pyimport
        __import__(modname)
    nipype/interfaces/nitime/__init__.py:5: in <module>
        from .analysis import (CoherenceAnalyzerInputSpec, CoherenceAnalyzerOutputSpec,
    nipype/interfaces/nitime/analysis.py:28: in <module>
        package_check('nitime')
    nipype/utils/misc.py:180: in package_check
        mod = __import__(pkg_name)
    ../../../virtualenv/python2.7.15/lib/python2.7/site-packages/nitime/__init__.py:26: in <module>
        from . import algorithms
    ../../../virtualenv/python2.7.15/lib/python2.7/site-packages/nitime/algorithms/__init__.py:62: in <module>
        from nitime.algorithms.event_related import *
    E     File "/home/travis/virtualenv/python2.7.15/lib/python2.7/site-packages/nitime/algorithms/event_related.py", line 60
    E       h = np.array(linalg.pinv(X.T @ X) @ X.T @ y.T)
    E                                    ^
    E   SyntaxError: invalid syntax
    
    opened by effigies 11
  • pip install problem with numpy

    pip install problem with numpy

    This error happens with numpy installed. It also happens when building in readthedocs projects having nitime as a requirement and autodocs enabled.

    Collecting numpy (from nitime)
      Using cached numpy-1.10.4-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
    Collecting nitime
      Downloading nitime-0.6.tar.gz (10.0MB)
        100% |████████████████████████████████| 10.0MB 55kB/s 
        Complete output from command python setup.py egg_info:
        Traceback (most recent call last):
          File "<string>", line 20, in <module>
          File "/private/var/folders/hw/7bn8tjn96vd58k7sg1ptt82c0000gn/T/pip-build-l6NHiN/nitime/setup.py", line 17, in <module>
            exec(f.read())
          File "<string>", line 2, in <module>
          File "nitime/__init__.py", line 26, in <module>
            from . import algorithms
          File "nitime/algorithms/__init__.py", line 55, in <module>
            from nitime.algorithms.spectral import *
          File "nitime/algorithms/spectral.py", line 10, in <module>
            import numpy as np
        ImportError: No module named numpy
    
        ----------------------------------------
    Command "python setup.py egg_info" failed with error code 1 in /private/var/folders/hw/7bn8tjn96vd58k7sg1ptt82c0000gn/T/pip-build-l6NHiN/nitime
    
    opened by oesteban 11
  • Lazy imports

    Lazy imports

    Here's a set of patches that make nitime imports faster and cleaner by deferring the matplotlib and scipy imports (in a few places) until they are actually needed.

    Mostly, I want this so that I can import nitime.timeseries without pulling in matplotlib and scipy.

    Without this PR wall time for imports is 1.2 - 1.9 seconds:

    16:[email protected](master)$ time python -c "import nitime" 
    
    real    0m1.879s
    user    0m0.870s
    sys     0m0.415s
    

    With this PR:

    16:[email protected](lazy-imports)$ time python -c "import nitime" 
    
    real    0m0.425s
    user    0m0.242s
    sys     0m0.111s
    

    Which is pretty damn good, considering that on this system:

    16:[email protected](lazy-imports)$ time  python -c "import numpy" 
    
    real    0m0.385s
    user    0m0.206s
    sys     0m0.108s
    

    (In particular - there's about a 300ms advantage of lazyloading numpy.testing.nosetools!)

    Here are some import analyses - using this lazy loading saves us from importing ~500 modules up front.

    In [2]: import sys; snn = set([k for k in sys.modules]); len(snn)
    Out[2]: 461 # set of modules - no nitime
    
    In [3]: import nitime; sn = set([k for k in sys.modules]); len(sn)
    Out[3]: 629 # set of modules with nitime (this is 1102 without lazy loading)
    
    In [4]: nitime.test(); snt = set([k for k in sys.modules]); len(sn)
    Out[4]: 1540 # set of modules after nitime.test() (1542 without lazy loading)
    

    The functionality of lazyimports.LazyImport is generic enough to allow the lazily imported module to act as the module in almost every way (tab completion, introspection for docstrings and sources) except reloading is not supported.

    For skeptics - add a line such as bogus.parameter : True to the end of your ~/.matplotlib/matplotlibrc - which will cause a Bad Key user warning from matplotlib complaint on import. Then ::

    In [1]: import sys
    
    In [2]: import matplotlib.mlab as mlab
    
    Bad key "bogus.parameter" on line 374 in
    /home/pi/.matplotlib/matplotlibrc.
    You probably need to get an updated matplotlibrc file from
    http://matplotlib.sf.net/_static/matplotlibrc or from the matplotlib source
    distribution
    
    In [3]: mlab
    Out[3]: <module 'matplotlib.mlab' from '.../site-packages/matplotlib/mlab.pyc'>
    
    In [4]: mlab.
    Display all 107 possibilities? (y or n)n
    
    In [6]: [sys.modules.pop(k) for k in sys.modules.keys() if 'matplotlib' in k];
    
    In [7]: from nitime.lazyimports import mlab
    
    In [8]: mlab
    
    Bad key "bogus.parameter" on line 374 in
    /home/pi/.matplotlib/matplotlibrc.
    You probably need to get an updated matplotlibrc file from
    http://matplotlib.sf.net/_static/matplotlibrc or from the matplotlib source
    distribution
    Out[8]: <module 'matplotlib.mlab' from '.../site-packages/matplotlib/mlab.pyc'>
    
    In [9]: mlab.
    Display all 107 possibilities? (y or n)n
    

    In particular - note that for the lazy case, the actual import of matplotlib did not happen until after In [8] - which imported the module and called the repr on it.

    As a side note (on making reload() work): The following code (a bit more convoluted than what's in this PR) gets closer to being able to reload, but I haven't been able to figure out what machinery is missing to make it fully work. Perhaps @fperez has an idea, but it's not a big deal.

    import nitime.descriptors as desc
    from types import ModuleType as module
    
    class LazyImport(module):
        def __init__(self, modname):
            #module.__init__(self,modname,"foo")
            self.__lazyname__= modname
            self.__name__= modname
        @desc.auto_attr # one-time property
        def __lazyimported__(self):
            name = module.__getattribute__(self,'__lazyname__')
            return __import__(name, fromlist=name.split('.'))
        def __getattribute__(self,x):
            return module.__getattribute__(self,'__lazyimported__').__getattribute__(x)
        def __repr__(self):
            return module.__getattribute__(self,'__lazyimported__').__repr__()
    
    opened by ivanov 11
  • Memory error of  GrangerAnalyzer

    Memory error of GrangerAnalyzer

    Dear all, When I run a script like that:

    >>>sampling_rate=1000
    >>>freq_idx_G
    Out[7]: array([40, 41])
    >>>G.frequencies.shape[0]
    Out[8]: 513
    >>>g1 = np.mean(G.causality_xy[:, :, freq_idx_G], -1)
    

    it met the following memory error (freq_idx_G=):

    ---------------------------------------------------------------------------
    MemoryError                               Traceback (most recent call last)
    <ipython-input-6-b3dd332ebe13> in <module>()
    ----> 1 g1 = np.mean(G.causality_xy[:, :, freq_idx_G], -1)
    
    /home/qdong/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/nitime/descriptors.pyc in __get__(self, obj, type)
        138         # Errors in the following line are errors in setting a
        139         # OneTimeProperty
    --> 140         val = self.getter(obj)
        141 
        142         setattr(obj, self.name, val)
    
    /home/qdong/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/nitime/analysis/granger.pyc in causality_xy(self)
        202     @desc.setattr_on_read
        203     def causality_xy(self):
    --> 204         return self._dict2arr('gc_xy')
        205 
        206     @desc.setattr_on_read
    
    /home/qdong/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/nitime/analysis/granger.pyc in _dict2arr(self, key)
        191         arr = np.empty((self._n_process,
        192                         self._n_process,
    --> 193                         self.frequencies.shape[0]))
        194 
        195         arr.fill(np.nan)
    
    MemoryError: 
    
    

    Can anyone give me some tips? Thanks!

    opened by dongqunxi 7
  • sphinx docs won't build (related to lazyimports?)

    sphinx docs won't build (related to lazyimports?)

    Running Sphinx v1.1.2 /Library/Frameworks/EPD64.framework/Versions/7.2/lib/python2.7/site-packages/matplotlib/init.py:908: UserWarning: This call to matplotlib.use() has no effect because the the backend has already been chosen; matplotlib.use() must be called before pylab, matplotlib.pyplot, or matplotlib.backends is imported for the first time.

    if warn: warnings.warn(_use_error_msg) WARNING: extension 'ipython_console_highlighting' has no setup() function; is it really a Sphinx extension module? loading pickled environment... not yet created building [html]: targets for 71 source files that are out of date updating environment: 71 added, 0 changed, 0 removed /Users/arokem/projects/nitime/doc/sphinxext/docscrape.py:117: UserWarning: Unknown section Note warn("Unknown section %s" % key) /Users/arokem/projects/nitime/doc/sphinxext/docscrape.py:117: UserWarning: Unknown section Warning warn("Unknown section %s" % key) /Users/arokem/projects/nitime/doc/sphinxext/docscrape.py:117: UserWarning: Unknown section Example warn("Unknown section %s" % key) reading sources... [ 29%] api/generated/nitime.lazyimports
    Exception occurred: File "/Library/Frameworks/EPD64.framework/Versions/7.2/lib/python2.7/site-packages/sphinx/environment.py", line 828, in read_doc pickle.dump(doctree, f, pickle.HIGHEST_PROTOCOL) PicklingError: Can't pickle <type 'module'>: attribute lookup builtin.module failed The full traceback has been saved in /var/folders/sf/3b6q6p1d7518rpb4882pzsxw0000gn/T/sphinx-err-9UpBlB.log, if you want to report the issue to the developers. Please also report this if it was a user error, so that a better error message can be provided next time. Either send bugs to the mailing list at http://groups.google.com/group/sphinx-dev/, or report them in the tracker at http://bitbucket.org/birkenfeld/sphinx/issues/. Thanks! make: *** [htmlonly] Error 1

    opened by arokem 6
  • Reorganization

    Reorganization

    This branch contains a major reorganization of algorithms.py as a sub-module of the library. The main idea is to change the layout of the library, making it slightly more developer-friendly. I am asking for a review of this, in the hopes of getting comments on the general structure. The idea is to adopt a similar structure for timeseries.py, utils.py, analysis.py and viz.py.

    It also includes completion of 100% test coverage for almost all of the algorithms sub-module. Some of it is just smoke testing, but I have added quite a bit of actual tests for spectral and coherence, as well as for autoregressive.

    The one bit that is still not entirely covered by the tests is algorithms.wavelet. I am not so sure how to use these functions. Maybe someone with a better idea (Kilian?) can take a look and add tests for this sub-module?

    opened by arokem 6
  • Fix according changed sphinx API

    Fix according changed sphinx API

    Hi,

    The build fails with the following due to change in Sphinx's API change add_directive function. Log below:

    $ sphinx-build doc html-no-exec  
    Running Sphinx v3.2.0
    /home/nilesh/ups/nitime/doc/conf.py:34: MatplotlibDeprecationWarning: 
    The mpl_toolkits.axes_grid module was deprecated in Matplotlib 2.1 and will be removed two minor releases later. Use mpl_toolkits.axes_grid1 and mpl_toolkits.axisartist, which provide the same functionality instead.
      __import__(package, fromlist=parts)
    WARNING: while setting up extension ipython_console_highlighting: extension 'ipython_console_highlighting' has no setup() function; is it really a Sphinx extension module?
    
    Exception occurred:
      File "/home/nilesh/ups/nitime/doc/sphinxext/only_directives.py", line 40, in setup
        app.add_directive('htmlonly', html_only_directive, True, (0, 0, 0))
    TypeError: add_directive() takes from 3 to 4 positional arguments but 5 were given
    The full traceback has been saved in /tmp/sphinx-err-z9obztzm.log, if you want to report the issue to the developers.
    Please also report this if it was a user error, so that a better error message can be provided next time.
    A bug report can be filed in the tracker at <https://github.com/sphinx-doc/sphinx/issues>. Thanks!
    

    This is an attempt to fix it along with adding in sphinx build to travis tests so as to ensure this works OK with future commits as well.

    opened by nileshpatra 5
  • Deed description of document 'fmri_timeseries.csv'

    Deed description of document 'fmri_timeseries.csv'

    Under nitime/data/, there is a fmri_timeseries.csv file with 31 different areas. Can you give me more information about this file? For example, how did the data come from, or where did it come from?

    Thank you!

    opened by gaojunhui68 5
  • Timearray math

    Timearray math

    with this PR, adding and subtracting values which aren't TimeArrays first converts them and gives them the unit of the time array. For example

    In [1]: import nitime

    In [2]: nitime.TimeArray(1) + 1 Out[2]: 2.0 s

    In [3]: nitime.TimeArray(1, time_unit='ms') + 1 Out[3]: 2.0 ms

    In [4]: nitime.TimeArray(1, time_unit='ms') + 1 + nitime.TimeArray(1) Out[4]: 1002.0 ms

    In [5]: a = nitime.TimeArray(1)

    In [6]: a Out[6]: 1.0 s

    In [7]: a.convert_unit('ms')

    In [8]: a Out[8]: 1000.0 ms

    In [9]: a+1 Out[9]: 1001.0 ms

    opened by ivanov 5
  • `test_FilterAnalyzer` fails with scipy 1.8.0

    `test_FilterAnalyzer` fails with scipy 1.8.0

    Hi,

    In maintaining the NixOS package for nitime we noticed that the test test_FilterAnalyzer fails once we bump scipy to 1.8.0:

    _____________________________ test_FilterAnalyzer ______________________________
    
        def test_FilterAnalyzer():
            """Testing the FilterAnalyzer """
            t = np.arange(np.pi / 100, 10 * np.pi, np.pi / 100)
            fast = np.sin(50 * t) + 10
            slow = np.sin(10 * t) - 20
        
            fast_mean = np.mean(fast)
            slow_mean = np.mean(slow)
        
            fast_ts = ts.TimeSeries(data=fast, sampling_rate=np.pi)
            slow_ts = ts.TimeSeries(data=slow, sampling_rate=np.pi)
        
            #Make sure that the DC is preserved
            f_slow = nta.FilterAnalyzer(slow_ts, ub=0.6)
            f_fast = nta.FilterAnalyzer(fast_ts, lb=0.6)
        
            npt.assert_almost_equal(f_slow.filtered_fourier.data.mean(),
                                    slow_mean,
                                    decimal=2)
        
            npt.assert_almost_equal(f_slow.filtered_boxcar.data.mean(),
                                    slow_mean,
                                    decimal=2)
        
            npt.assert_almost_equal(f_slow.fir.data.mean(),
                                    slow_mean)
        
            npt.assert_almost_equal(f_slow.iir.data.mean(),
                                    slow_mean)
        
            npt.assert_almost_equal(f_fast.filtered_fourier.data.mean(),
                                    10)
        
            npt.assert_almost_equal(f_fast.filtered_boxcar.data.mean(),
                                    10,
                                    decimal=2)
        
            npt.assert_almost_equal(f_fast.fir.data.mean(),
                                    10)
        
            npt.assert_almost_equal(f_fast.iir.data.mean(),
                                    10)
        
            #Check that things work with a two-channel time-series:
            T2 = ts.TimeSeries(np.vstack([fast, slow]), sampling_rate=np.pi)
            f_both = nta.FilterAnalyzer(T2, ub=1.0, lb=0.1)
            #These are rather basic tests:
            npt.assert_equal(f_both.fir.shape, T2.shape)
    >       npt.assert_equal(f_both.iir.shape, T2.shape)
    

    Full build log available at https://hydra.nixos.org/log/12f43cyblp08zbjc5psd8ayxxmq3if72-python3.9-nitime-0.9.drv where all the python dependency versions can be seen. This is on an x86_64 linux system.

    opened by risicle 0
  • negative values in confidence interval of multi-taper coherence

    negative values in confidence interval of multi-taper coherence

    First of all, I still need to read more carefully the references, so I might be wrong.

    In the Multitaper coherence estimation tutorial, the confidence interval are computed (t975_limit and t025_limit), but they are not printed or visualized in any way later. It turns out that t025_limit contains many negative values, but coherence is constrained to be within [0, 1].

    Is there anything going wrong?

    opened by Xunius 8
  • tsa.periodogram() returns frequencies of all 0s when Fs=1.

    tsa.periodogram() returns frequencies of all 0s when Fs=1.

    Hi,

    I noticed that the following code returns freqs which is all 0s:

        freqs, d_psd = tsa.periodogram(ar_seq, Fs=1., normalize=False)
    

    I believe it is this line (in algorithms/spectral.py) that is causing the issue:

    freqs = np.linspace(0, Fs // 2, Fn)
    

    Should it be Fs / 2 instead?

    Version: nitime 0.9 Installed via conda

    opened by Xunius 3
  • will it work for multivariate time series prediction both regression and classification

    will it work for multivariate time series prediction both regression and classification

    great code thanks may you clarify : will it work for multivariate time series prediction both regression and classification 1 where all values are continues values 2 or even will it work for multivariate time series where values are mixture of continues and categorical values for example 2 dimensions have continues values and 3 dimensions are categorical values

    color        weight     gender  height  age  
    

    1 black 56 m 160 34 2 white 77 f 170 54 3 yellow 87 m 167 43 4 white 55 m 198 72 5 white 88 f 176 32

    opened by Sandy4321 0
  • nitime not installing in Jupyter

    nitime not installing in Jupyter

    Hello,

    I installed nitime in general using the command window but afterwards was made aware that it has to be installed directly in Jupyter because otherwise it doesn't work there. However, when I try to install it in Jupyter (using: "! pip install nitime") , the kernel just remains busy and nothing happens (I gave it 3 hours). Weird thing is that I tried the same command to install another random package ("geocoder") en this immediately worked.

    Does anyone know why nitime won't install?

    Thanks in advance!

    opened by CelienI 1
  • feature request:  multiple `p` values for `detect_lines`

    feature request: multiple `p` values for `detect_lines`

    i'd like to perform harmonic analysis with two different p-values on the same signal. all other parameters the same. it's a huge waste to call utils.detect_lines twice i would think. FFT has to be done twice etc. is there a workaround where i can save partial results? how easy would it be to add a method which input multiple p-values? thanks!

    opened by bjarthur 1
Releases(rel/0.9)
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

Tangram 1.4k Jan 05, 2023
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022