Free MLOps course from DataTalks.Club

Overview

MLOps Zoomcamp

Our MLOps Zoomcamp course

Overview

Objective

Teach practical aspects of productionizing ML services — from collecting requirements to model deployment and monitoring.

Target audience

Data scientists and ML engineers. Also software engineers and data engineers interested in learning about putting ML in production.

Pre-requisites

  • Python
  • Docker
  • Being comfortable with command line
  • Prior exposure to machine learning (at work or from other courses, e.g. from ML Zoomcamp)
  • Prior programming experience (at least 1+ year)

Timeline

Course start: 16 of May

Syllabus

This is a draft and will change.

Module 1: Introduction

  • What is MLOps
  • MLOps maturity model
  • Running example: NY Taxi trips dataset
  • Why do we need MLOps
  • Course overview
  • Environment preparation
  • Homework

More details

Module 2: Experiment tracking and model management

  • Experiment tracking intro
  • Getting started with MLflow
  • Experiment tracking with MLflow
  • Saving and loading models with MLflow
  • Model registry
  • MLflow in practice
  • Homework

More details

Module 3: Orchestration and ML Pipelines

  • ML Pipelines: introduction
  • Prefect
  • Turning a notebook into a pipeline
  • Kubeflow Pipelines
  • Homework

Module 4: Model Deployment

  • Batch vs online
  • For online: web services vs streaming
  • Serving models in Batch mode
  • Web services
  • Streaming (Kinesis/SQS + AWS Lambda)
  • Homework

Module 5: Model Monitoring

  • ML monitoring vs software monitoring
  • Data quality monitoring
  • Data drift / concept drift
  • Batch vs real-time monitoring
  • Tools: Evidently, Prometheus and Grafana
  • Homework

Module 6: Best Practices

  • Devops
  • Virtual environments and Docker
  • Python: logging, linting
  • Testing: unit, integration, regression
  • CI/CD (github actions)
  • Infrastructure as code (terraform, cloudformation)
  • Cookiecutter
  • Makefiles
  • Homework

Module 7: Processes

  • CRISP-DM, CRISP-ML
  • ML Canvas
  • Data Landscape canvas
  • MLOps Stack Canvas
  • Documentation practices in ML projects (Model Cards Toolkit)

Project

  • End-to-end project with all the things above

Running example

To make it easier to connect different modules together, we’d like to use the same running example throughout the course.

Possible candidates:

Instructors

  • Larysa Visengeriyeva
  • Cristian Martinez
  • Kevin Kho
  • Theofilos Papapanagiotou
  • Alexey Grigorev
  • Emeli Dral
  • Sejal Vaidya

Other courses from DataTalks.Club:

FAQ

I want to start preparing for the course. What can I do?

If you haven't used Flask or Docker

If you have no previous experience with ML

  • Check Module 1 from ML Zoomcamp for an overview
  • Module 3 will also be helpful if you want to learn Scikit-Learn (we'll use it in this course)
  • We'll also use XGBoost. You don't have to know it well, but if you want to learn more about it, refer to module 6 of ML Zoomcamp

I registered but haven't received an invite link. Is it normal?

Yes, we haven't automated it. You'll get a mail from us eventually, don't worry.

If you want to make sure you don't miss anything:

Is it going to be live?

No and yes. There will be two parts:

  • Lectures: Pre-recorded, you can watch them when it's convenient for you.
  • Office hours: Live on Mondays (17:00 CET), but recorded, so you can watch later.

Supporters and partners

Thanks to the course sponsors for making it possible to create this course

Thanks to our friends for spreading the word about the course

Owner
DataTalksClub
The place to talk about data
DataTalksClub
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022