This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

Overview

MLProject_01

This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

Context

Dataset

English question data set file

Feature Description

question answering

English data set data:

check answer

Create a Virtual Environment

Clone the repo:

git clone 
   
    
cd MLProject_01 

   

For the project, virtualenv is used. To install virtualenv:

pip install virtualenv

To create a virtual environment:

virtualenv venv

If it doesn't work then try:

python -m virtualenv venv

Activate the Virtual Environment:

For Windows:

.\venv\Scripts\activate

For Linux and MacOS:

source venv/bin/activate

Install Dependencies

Install the dependencies:

pip install -r requirements.txt

Build Docker Image

To build a Docker image:

docker build -t  .

TO run the image as a container:

docker run --rm -it -p 9696:9696 :latest

To test the prediction API running in docker, run _test.py locally.

Run the Jupyter Notebook

Run Jupiter notebook using the following command assuming we are inside the project directory:

jupyter notebook

Run the Model Locally

The final model training codes are exported in this file. To train the model:

python train.py

For local deployment, start up the Flask server for prediction API:

python predict.py

Or use a WSGI server, Waitress to run:

waitress-serve --listen=0.0.0.0:9696 predict:app

It will run the server on localhost using port 9696.

Finally, send a request to the prediction API http://localhost:9696/predict and get the response:

python predict_test.py

Run the Model in Cloud

The model is deployed on **Heroku ** and can be accessed using:

https://bank-marketing-system.herokuapp.com/predict

The API takes a JSON array of records as input and returns a response JSON array.

How to deploy a basic Flask application to Pythonanywhere can be found here. Only upload the .csv, train.py, and .py files inside the app directory. Then open a terminal and run train.py and predict.py files. Finally, reload the application. If everything is okay, then the API should be up and running.

To test the cloud API, again run _test.py from locally using the cloud API URL.

Owner
Hadi Nakhi
Full Stack Developer-Research & Learning About Machine Learning
Hadi Nakhi
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
SPCL 48 Dec 12, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt ZajÄ…c 57 Oct 23, 2020
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Pragmatic AI Labs 421 Dec 31, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022