A collection of Scikit-Learn compatible time series transformers and tools.

Overview

tsfeast

build codecov

A collection of Scikit-Learn compatible time series transformers and tools.

Installation

Create a virtual environment and install:

From PyPi

pip install tsfeast

From this repo

pip install git+https://github.com/chris-santiago/tsfeast.git

Use

Preliminaries

This example shows both the use of individual transformers and the TimeSeriesFeatures convenience class that wraps multiple transformers. Both methods are compatible with Scikit-Learn Pipeline objects.

import warnings
warnings.filterwarnings("ignore")  # ignore pandas concat warnings from statsmodels

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression, Lasso, PoissonRegressor
from sklearn.pipeline import Pipeline
from sklearn.feature_selection import SelectKBest
from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error, mean_absolute_error
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from statsmodels.tsa.arima_process import arma_generate_sample
from steps.forward import ForwardSelector

from tsfeast.transformers import DateTimeFeatures, InteractionFeatures, LagFeatures
from tsfeast.tsfeatures import TimeSeriesFeatures
from tsfeast.funcs import get_datetime_features
from tsfeast.utils import plot_diag
from tsfeast.models import ARMARegressor
def make_dummy_data(n=200):
    n_lags = 2
    coefs = {'ar': [1, -0.85], 'ma': [1, 0], 'trend': 3.2, 'bdays_in_month': 231, 'marketing': 0.0026}
    rng = np.random.default_rng(seed=42)
    
    sales = pd.DataFrame({
        'date': pd.date_range(end='2020-08-31', periods=n, freq='M'),
        'sales_base': rng.poisson(200, n),
        'sales_ar': arma_generate_sample(ar=coefs['ar'], ma=coefs['ma'], nsample=n, scale=100),
        'sales_trend': [x * coefs['trend'] + rng.poisson(300) for x in range(1, n+1)],
    })
    
    sales = sales.join(get_datetime_features(sales['date'])[['bdays_in_month', 'quarter']])
    sales['sales_per_day'] = sales['bdays_in_month'] * coefs['bdays_in_month'] + rng.poisson(100, n)
    
    sales['mkt_base'] = rng.normal(1e6, 1e4, n)
    sales['mkt_trend'] = np.array([x * 5e3 for x in range(1, n+1)]) + rng.poisson(100)
    sales['mkt_season'] = np.where(sales['quarter'] == 3, sales['mkt_base'] * .35, 0)
    sales['mkt_total'] = sales.loc[:, 'mkt_base': 'mkt_season'].sum(1) + rng.poisson(100, n)
    sales['sales_mkting'] = sales['mkt_total'].shift(n_lags) * coefs['marketing']
    
    final = pd.DataFrame({
        'y': sales[['sales_base', 'sales_ar', 'sales_trend', 'sales_per_day', 'sales_mkting']].sum(1).astype(int),
        'date': sales['date'],
        'marketing': sales['mkt_total'],
        'x2': rng.random(n),
        'x3': rng.normal(loc=320, scale=4, size=n)
    })
    return sales.iloc[2:, :], final.iloc[2:, :]
def get_results(estimator, x_train, x_test, y_train, y_test):
    return pd.DataFrame(
        {
            'training': [
                mean_absolute_error(y_train, estimator.predict(x_train)), 
                mean_absolute_percentage_error(y_train, estimator.predict(x_train))
            ],
            'testing':  [
                mean_absolute_error(y_test, estimator.predict(x_test)), 
                mean_absolute_percentage_error(y_test, estimator.predict(x_test))
            ],
        },
        index = ['MAE', 'MAPE']
    )

Example Data

The dummy dataset in this example includes trend, seasonal, autoregressive and other factor components. Below, we visualize the individual components (comps) and features of the dummy dataset data.

comps, data = make_dummy_data()

Sales Components

comps.head()
date sales_base sales_ar sales_trend bdays_in_month quarter sales_per_day mkt_base mkt_trend mkt_season mkt_total sales_mkting
2 2004-03-31 211 153.620257 285.6 23 1 5402 1.012456e+06 15128.0 0.000000 1.027692e+06 2584.285914
3 2004-04-30 181 18.958345 300.8 22 2 5180 1.009596e+06 20128.0 0.000000 1.029835e+06 2661.116408
4 2004-05-31 195 54.420246 312.0 20 2 4726 9.848525e+05 25128.0 0.000000 1.010071e+06 2672.000109
5 2004-06-30 206 31.100042 326.2 22 2 5195 1.008291e+06 30128.0 0.000000 1.038529e+06 2677.570754
6 2004-07-31 198 34.283905 317.4 21 3 4952 1.004049e+06 35128.0 351416.992807 1.390691e+06 2626.185776
for col in comps.columns:
    print(f'Column: {col}')
    plt.figure(figsize=(10, 5))
    plt.plot(comps[col])
    plt.show()
Column: date

png

Column: sales_base

png

Column: sales_ar

png

Column: sales_trend

png

Column: bdays_in_month

png

Column: quarter

png

Column: sales_per_day

png

Column: mkt_base

png

Column: mkt_trend

png

Column: mkt_season

png

Column: mkt_total

png

Column: sales_mkting

png

Dummy Dataset

data.head()
y date marketing x2 x3
2 8636 2004-03-31 1.027692e+06 0.716752 316.389974
3 8341 2004-04-30 1.029835e+06 0.466509 318.780107
4 7959 2004-05-31 1.010071e+06 0.361299 324.917503
5 8435 2004-06-30 1.038529e+06 0.852623 316.776026
6 8127 2004-07-31 1.390691e+06 0.571951 314.425310
for col in data.columns:
    print(f'Column: {col}')
    plt.figure(figsize=(10, 5))
    plt.plot(data[col])
    plt.show()
Column: y

png

Column: date

png

Column: marketing

png

Column: x2

png

Column: x3

png

X = data.iloc[:, 1:]
y = data.iloc[:, 0]
x_train, x_test = X.iloc[:-40, :], X.iloc[-40:, :]
y_train, y_test = y.iloc[:-40], y.iloc[-40:]

Individual Transformers

tsfeast provides individual time series transformers that can be used by themselves or within Scikit-Learn Pipeline objects:

Transformer Parameters Description
OriginalFeatures None Passes original features through pipeline.
Scaler None Wraps Scikit-Learn StandardScaler to maintain DataFrame columns.
DateTimeFeatures date_col: str, dt_format: str, freq: str Generates datetime features from a given date column.
LaggedFeatures n_lags: int, fillna: bool Generate lag features.
RollingFeatures window_lengths: List[int], fillna: bool Generate rolling features (mean, std, min, max) for each specified window length.
EwmaFeatures window_lengths: List[int], fillna: bool Generate exponentially-weighted moving average for each specified window length.
ChangeFeatures period_lengths: List[int], fillna: bool Generate percent change for all features for each specified period length.
DifferenceFeatures n_diffs: int, fillna: bool Generate n differences for all features.
PolyFeatures degree: int Generate polynomial features.
InteractionFeatures None Wraps Scikit-Learn PolynomialFeatures to generate interaction features and maintain DataFrame columns.

Notes on Pipeline Use

Behavior of Scikit-Learn Pipeline objects is appropriate and intended for independent data observations, but not necessarily appropriate for the temporal dependencies inherent in time series.

Scikit-Learn pipelines only call the .transform() method during the .predict() method, which is appropriate to prevent data leakage in predictions. However, most of the transformers in this package take a set of features and generate new features; there's no inherent method to transform some time series features given a fitted estimator.

For time series lags, changes, etc., we have access to past data for feature generation without risk of data leakage; certain features (e.g. lags) require this to avoid NaNs or zeros. This behavior is appropriate for time series transformations, only.

Generate DateTime Features

dt = DateTimeFeatures(date_col='date')
dt.fit_transform(X, y)
year quarter month days_in_month bdays_in_month leap_year
2 2004 1 3 31 23 1
3 2004 2 4 30 22 1
4 2004 2 5 31 20 1
5 2004 2 6 30 22 1
6 2004 3 7 31 21 1
... ... ... ... ... ... ...
195 2020 2 4 30 22 1
196 2020 2 5 31 20 1
197 2020 2 6 30 22 1
198 2020 3 7 31 22 1
199 2020 3 8 31 21 1

198 rows × 6 columns

Generate Interaction Features

feat = LagFeatures(n_lags=4)
feat.fit_transform(X.iloc[:, 1:], y)  # skipping date column
marketing_lag_1 x2_lag_1 x3_lag_1 marketing_lag_2 x2_lag_2 x3_lag_2 marketing_lag_3 x2_lag_3 x3_lag_3 marketing_lag_4 x2_lag_4 x3_lag_4
2 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000
3 1.027692e+06 0.716752 316.389974 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000
4 1.029835e+06 0.466509 318.780107 1.027692e+06 0.716752 316.389974 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000
5 1.010071e+06 0.361299 324.917503 1.029835e+06 0.466509 318.780107 1.027692e+06 0.716752 316.389974 0.000000e+00 0.000000 0.000000
6 1.038529e+06 0.852623 316.776026 1.010071e+06 0.361299 324.917503 1.029835e+06 0.466509 318.780107 1.027692e+06 0.716752 316.389974
... ... ... ... ... ... ... ... ... ... ... ... ...
195 1.971301e+06 0.420222 313.911203 1.968782e+06 0.648398 327.288221 1.973312e+06 0.860346 319.932653 1.967943e+06 0.216269 317.692606
196 1.981624e+06 0.188104 324.110324 1.971301e+06 0.420222 313.911203 1.968782e+06 0.648398 327.288221 1.973312e+06 0.860346 319.932653
197 1.977056e+06 0.339024 315.926738 1.981624e+06 0.188104 324.110324 1.971301e+06 0.420222 313.911203 1.968782e+06 0.648398 327.288221
198 1.978757e+06 0.703778 320.409889 1.977056e+06 0.339024 315.926738 1.981624e+06 0.188104 324.110324 1.971301e+06 0.420222 313.911203
199 2.332540e+06 0.204360 319.029524 1.978757e+06 0.703778 320.409889 1.977056e+06 0.339024 315.926738 1.981624e+06 0.188104 324.110324

198 rows × 12 columns

TimeSeriesFeatures Class

tsfeast also includes a TimeSeriesFeatures class that generates multiple time series features in one transformer. The only required parameter is the column of datetimes; the optional parameters control what additional transformers are included.

Parameter Type Description
datetime str Column that holds datetime information
trend str Trend to include, options are {'n': no trend, 'c': constant only, 't': linear trend, 'ct': constant and linear trend, 'ctt': constant, linear and quadratric trend}; defaults to no trend
lags int Number of lags to include (optional).
rolling List[int] Number of rolling windows to include (optional).
ewma List[int] Number of ewma windows to include (optional).
pct_chg List[int] Periods to use for percent change features (optional).
diffs int Number of differences to include (optional).
polynomial int Polynomial(s) to include (optional).
interactions bool Whether to include interactions of original featutes; deault True.
fillna bool Whether to fill NaN values with zero; default True.
feat = TimeSeriesFeatures(
    datetime='date',
    trend='t',
    lags=4,
    interactions=False,
    polynomial=3
)
features = feat.fit_transform(X, y)
features.head()
trend original__marketing original__x2 original__x3 datetime__year datetime__quarter datetime__month datetime__days_in_month datetime__bdays_in_month datetime__leap_year ... features__lags__x3_lag_3 features__lags__marketing_lag_4 features__lags__x2_lag_4 features__lags__x3_lag_4 features__polynomial__marketing^2 features__polynomial__x2^2 features__polynomial__x3^2 features__polynomial__marketing^3 features__polynomial__x2^3 features__polynomial__x3^3
0 1.0 1.027692e+06 0.716752 316.389974 2004.0 1.0 3.0 31.0 23.0 1.0 ... 0.000000 0.000000e+00 0.000000 0.000000 1.056152e+12 0.513733 100102.615631 1.085399e+18 0.368219 3.167146e+07
1 2.0 1.029835e+06 0.466509 318.780107 2004.0 2.0 4.0 30.0 22.0 1.0 ... 0.000000 0.000000e+00 0.000000 0.000000 1.060560e+12 0.217631 101620.756699 1.092202e+18 0.101527 3.239468e+07
2 3.0 1.010071e+06 0.361299 324.917503 2004.0 2.0 5.0 31.0 20.0 1.0 ... 0.000000 0.000000e+00 0.000000 0.000000 1.020244e+12 0.130537 105571.383672 1.030520e+18 0.047163 3.430199e+07
3 4.0 1.038529e+06 0.852623 316.776026 2004.0 2.0 6.0 30.0 22.0 1.0 ... 316.389974 0.000000e+00 0.000000 0.000000 1.078543e+12 0.726966 100347.050373 1.120098e+18 0.619827 3.178754e+07
4 5.0 1.390691e+06 0.571951 314.425310 2004.0 3.0 7.0 31.0 21.0 1.0 ... 318.780107 1.027692e+06 0.716752 316.389974 1.934020e+12 0.327128 98863.275608 2.689624e+18 0.187101 3.108512e+07

5 rows × 28 columns

[x for x in features.columns]
['trend',
 'original__marketing',
 'original__x2',
 'original__x3',
 'datetime__year',
 'datetime__quarter',
 'datetime__month',
 'datetime__days_in_month',
 'datetime__bdays_in_month',
 'datetime__leap_year',
 'features__lags__marketing_lag_1',
 'features__lags__x2_lag_1',
 'features__lags__x3_lag_1',
 'features__lags__marketing_lag_2',
 'features__lags__x2_lag_2',
 'features__lags__x3_lag_2',
 'features__lags__marketing_lag_3',
 'features__lags__x2_lag_3',
 'features__lags__x3_lag_3',
 'features__lags__marketing_lag_4',
 'features__lags__x2_lag_4',
 'features__lags__x3_lag_4',
 'features__polynomial__marketing^2',
 'features__polynomial__x2^2',
 'features__polynomial__x3^2',
 'features__polynomial__marketing^3',
 'features__polynomial__x2^3',
 'features__polynomial__x3^3']

Pipeline Example

The TimeSeriesFeatures class can be used as a feature generation step within a Scikit-Learn Pipeline. Given the temporal nature of the data and models, this may not be appropriate for all use cases-- though the class remains fully compatible with Pipeline objects.

We'll instantiate a TimeSeriesFeatures object with a linear trend, four lags and no interactions. Our pipeline will include feature generation, feature scaling and feature selection steps, before modeling with ordinary least squares.

Note: the ForwardSelector class is available in the step-select package (https://pypi.org/project/step-select/).

The pipeline creates a total of 22 features, before selecting only four to use in the final model. Note that 3 of the 4 final features corresponed with features from our "true model" that created the dummy dataset ('trend', 'datetime__bdays_in_month' and 'marketing_lag_2').

Regression diagnostic plots show evidence of slightly non-normal residuals and (1) autoregressive term (again, as specified in the "true model"). We'll address the autoregressive term in the next example.

feat = TimeSeriesFeatures(
    datetime='date',
    trend='t',
    lags=4,
    interactions=False
)

pl = Pipeline([
    ('feature_extraction', feat),
    ('scaler', StandardScaler()),
    ('feature_selection', ForwardSelector(metric='bic')),
    ('regression', LinearRegression())
])

pl.fit(x_train, y_train)
Pipeline(steps=[('feature_extraction',
                 TimeSeriesFeatures(datetime='date', interactions=False, lags=4,
                                    trend='t')),
                ('scaler', StandardScaler()),
                ('feature_selection', ForwardSelector(metric='bic')),
                ('regression', LinearRegression())])
pl.named_steps.feature_extraction.output_features_
trend original__marketing original__x2 original__x3 datetime__year datetime__quarter datetime__month datetime__days_in_month datetime__bdays_in_month datetime__leap_year ... features__lags__x3_lag_1 features__lags__marketing_lag_2 features__lags__x2_lag_2 features__lags__x3_lag_2 features__lags__marketing_lag_3 features__lags__x2_lag_3 features__lags__x3_lag_3 features__lags__marketing_lag_4 features__lags__x2_lag_4 features__lags__x3_lag_4
0 1.0 1.027692e+06 0.716752 316.389974 2004.0 1.0 3.0 31.0 23.0 1.0 ... 0.000000 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000
1 2.0 1.029835e+06 0.466509 318.780107 2004.0 2.0 4.0 30.0 22.0 1.0 ... 316.389974 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000
2 3.0 1.010071e+06 0.361299 324.917503 2004.0 2.0 5.0 31.0 20.0 1.0 ... 318.780107 1.027692e+06 0.716752 316.389974 0.000000e+00 0.000000 0.000000 0.000000e+00 0.000000 0.000000
3 4.0 1.038529e+06 0.852623 316.776026 2004.0 2.0 6.0 30.0 22.0 1.0 ... 324.917503 1.029835e+06 0.466509 318.780107 1.027692e+06 0.716752 316.389974 0.000000e+00 0.000000 0.000000
4 5.0 1.390691e+06 0.571951 314.425310 2004.0 3.0 7.0 31.0 21.0 1.0 ... 316.776026 1.010071e+06 0.361299 324.917503 1.029835e+06 0.466509 318.780107 1.027692e+06 0.716752 316.389974
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
153 154.0 1.752743e+06 0.060631 322.823879 2016.0 4.0 12.0 31.0 21.0 1.0 ... 312.156618 1.750890e+06 0.537173 319.820019 2.110972e+06 0.368344 324.492379 2.127929e+06 0.320161 322.674221
154 155.0 1.782890e+06 0.368878 313.360448 2017.0 1.0 1.0 31.0 20.0 0.0 ... 322.823879 1.762560e+06 0.296868 312.156618 1.750890e+06 0.537173 319.820019 2.110972e+06 0.368344 324.492379
155 156.0 1.788336e+06 0.254549 321.235197 2017.0 1.0 2.0 28.0 19.0 0.0 ... 313.360448 1.752743e+06 0.060631 322.823879 1.762560e+06 0.296868 312.156618 1.750890e+06 0.537173 319.820019
156 157.0 1.790967e+06 0.385921 316.450145 2017.0 1.0 3.0 31.0 23.0 0.0 ... 321.235197 1.782890e+06 0.368878 313.360448 1.752743e+06 0.060631 322.823879 1.762560e+06 0.296868 312.156618
157 158.0 1.811012e+06 0.196960 315.360643 2017.0 2.0 4.0 30.0 20.0 0.0 ... 316.450145 1.788336e+06 0.254549 321.235197 1.782890e+06 0.368878 313.360448 1.752743e+06 0.060631 322.823879

158 rows × 22 columns

new_features = pl.named_steps.feature_extraction.feature_names_
mask = pl.named_steps.feature_selection.get_support()
new_features[mask]
Index(['trend', 'datetime__bdays_in_month', 'features__lags__marketing_lag_2',
       'features__lags__x3_lag_2'],
      dtype='object')
get_results(pl, x_train, x_test, y_train, y_test)
training testing
MAE 373.819325 201.999695
MAPE 0.040046 0.017827
resid = (y_train - pl.predict(x_train))
plot_diag(resid.iloc[2:])  # throw out first two residuals b/c of lags

png

ARMA Regressor

tsfeast includes a models module that provides an ARMARegressor class for extending Scikit-Learn regressors by adding support for AR/MA or ARIMA residuals. It accepts an arbitrary Scikit-Learn regressor and a tuple indicating the (p,d,q) order for the residuals model.

Attribute Description
estimator The Scikit-Learn regressor.
order The (p,d,q,) order of the ARMA model.
intercept_ The fitted estimator's intercept.
coef_ The fitted estimator's coefficients.
arma_ The fitted ARMA model.
fitted_values_ The combined estimator and ARMA fitted values.
resid_ The combined estimator and ARMA residual values.

Note The predict method should not be used to get fitted values from the training set; rather, users should access this same data using the fitted_values_ attribute. The predict method calls the ARMA regresor's forecast method, which generates predictions from the last time step in the training data, thus would not match, temporally, in a predict call with training data.

The pipeline follows the same steps as the previous example, with the only change beging the regression model-- in this case, the ARMARegressor. Metrics on test set slightly improve and we no longer see evidence of autoregressive term in the residuals.

feat = TimeSeriesFeatures(
    datetime='date',
    trend='t',
    lags=4,
    interactions=False
)

mod = ARMARegressor(
    estimator=PoissonRegressor(),
    order=(1,0,0)
)

pl = Pipeline([
    ('feature_extraction', feat),
    ('scaler', StandardScaler()),
    ('feature_selection', ForwardSelector(metric='bic')),
    ('regression', mod)
])

pl.fit(x_train, y_train)
Pipeline(steps=[('feature_extraction',
                 TimeSeriesFeatures(datetime='date', interactions=False, lags=4,
                                    trend='t')),
                ('scaler', StandardScaler()),
                ('feature_selection', ForwardSelector(metric='bic')),
                ('regression', ARMARegressor(estimator=PoissonRegressor()))])
new_features = pl.named_steps.feature_extraction.feature_names_
mask = pl.named_steps.feature_selection.get_support()
new_features[mask]
Index(['trend', 'datetime__bdays_in_month', 'features__lags__marketing_lag_2',
       'features__lags__x3_lag_2'],
      dtype='object')
get_results(pl, x_train, x_test, y_train, y_test)
training testing
MAE 409.572082 143.269046
MAPE 0.043573 0.012745
plot_diag(pl.named_steps.regression.resid_)

png

You might also like...
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

Distributed scikit-learn meta-estimators in PySpark
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Scikit-Learn useful pre-defined Pipelines Hub
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

Releases(v0.1.1)
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022